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Abstract—Opportunistic networks enable mobile users to par- generate fake identities, known as sybil users [4]. Thebdssy

ticipate in various social interactions with applications such as can then obtain a higher influence in the system. Trust must
content distribution and micro-blogs. Because of their distributed Lance be considered at a more fundamental level

nature, securing user interactions relies rather on trust than - . . )
hard cryptography. Trust is often based on past user interactios In this paper, we conS|d¢r the _most baS'C_ Ie_vel of trust
such as in reputation systems relying on ratings. Yet, a more that can and must be achieved in opportunistic networks,
fundamental trust, social trust — assessing a user is genuine with i.e. social trust the belief that an identity is genuine and
honest intentions — must be established beforehand as manythat the user’s intentions are honest. By leveraging the so-
identities can be created easily (i.e., sybils). By leveraging the ;o) network structure and its dynamics (i.e., secure pajri
social network structure and its dynamics (conscious secure _ . | tacts [5 t ' hes for Koci
pairing and wireless contacts), we propose two complementary wireless contacts [5]), we propose two approaches for 5ocia
approaches for social trust establishment: explicit social trust trust establishment that are robust to sybil attackeplicit

and implicit social trust. Complexity, trust propagation and social trustandimplicit social trust We furthermore argue that
security issues are evaluated using real world complex graphs, neither PGP-like certificate chains nor distributed comityun
synthetic mobility models and mobility traces. We show how our detection algorithms [6] are suited to achieve this.

approach limits the maximum number of sybils independently . . . . .
of the network size and is more robust against manipulation Explicit social trust is based on consciously established

attacks compared to state-of-the-art approaches such as A6 friend ties by building a robust tree-like graph of paireénss .
like certification chains and distributed community detection In contrast to PGP and Capkun et al.'s approach [7], which

algorithms. assume unconditional transitivity of trust, we calculatast
as a function of hop distance and interconnection resulting
in decreasing trust with increasing hop distance and higher
Opportunistic networks will change the way people contrust in users that are well connected in the resulting graph
municate by allowing direct one-hop communications betwe&xplicit social trust conveys trust that the identity is sgbil
handheld devices carried by human beings while on the moesd verifies the honesty of the user’s intentions since he or
Users will be involved in participatory interactions withefr she paired consciously and can thus be easily detected and
surrounding using applications (e.g., mobile social nekimgy, identified if misbehaving.
content distribution [1], flea-markets, micro-blogs) emtiag Implicit social trust leverages mobility properties using
the experience of real-world social networks with digitatomplex network tools, since one might not pair with every
and ubiquitous features. With these applications, usefs wencountered user (e.g., some friends or familiar strapgkrs
publish their input or services (e.g. content, sold objdaitisg builds another graph up to two-hops based on the familiarity
entries) and subscribe based on their solicitations. Bypiit  of surrounding peers (i.e., the accumulated time of being in
disseminate from their authors to consumers through relgysximity) and the similarity (i.e. the amount of common
in a delay-tolerant epidemic fashion from hop to hop usinigmiliars) to reinforce trust in a user. Implicit social $tu
mobility without routing per se. While areas of operations aiconveys trust in the originality of identities due to their
mainly developing countries, for no fixed wireless infrastr persistency, i.e. not being fast switching as sybils. Tinst
ture is required, urban citizens will also enjoy a free andropthe honesty of the user’s intentions is not explicitly captl)
network that made the success of the Internet at its eady stabut again, since the identity is persistent a misbehavirgy us
In such an open environment where no central authorifgossibly sybil) would be easily spotted and punished.
can be assumed, infrastructure-based and hard cryptagraph Section Il presents related work. Section Il presents our
solutions are often traded for threshold cryptography [2] ®ocial trust establishment algorithms, which are evatliate
PGP-like chains [3]. Another prevailing solution used tolse Section IV in terms of complexity, dynamics and resilience
interactions between possibly unknown users is trust. Fagainst compromised nodes generating sybils. Section ¥ dis
instance, it is often considered in recommendation systemssses how to further secure our approach with prospects for
based on ratings, where trust relies on (i) the service (further investigations. Section VI concludes our work.
content) quality provided by others and (ii) trust in otheers’
opinions having similar taste. This trust, however, reegiir Il. RELATED WORK
interactions between users in order to be established. What iA sybil attack [4] describes the attempt to create many
more, pure opportunistic networks cannot ensure a oneo-addentities in order to gain larger influence in a reputatigs-s
binding between an identity and a user. Compared to restm, abandon bad reputation or evade responsibility ohéis/
world social networks, their digital counterpart allow t@asdy actions. In order to detect such attacks, Piro et al. [8] nlese
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that sybil users can only communicate serially and thusecauseet by secure pairing. In contrary to PGP and Capkun et
much fewer collisions at the MAC layer. SybilGuard [9]al. [18], we assume conditional transitivity of tristepending
considers that sybil users have only a few trust relatigrsshion hop distance and connectivity, i.e. trust in a user camaec
which can be highlighted by carefully observing the sociab several common friends is higher than in a user with one
graph. Location-based sybil detection is also an effectigingle connection over various hops. Through chains ofpair
measure [10] but requires specialized hardware. Note that faiends, the human entity behind the identity is verified ethi
these approaches only provide a probabilistic assessmi@nt @nsures that the identity is not sybil. On the downside, reecu
node being sybil. pairing requires conscious user interaction and cannot be
Reputation systems are an ideal target for sybil attacKs [1performed automatically. Thus, the resulting graph wilydre
[12]. These systems rely on disseminated user ratings lomsely connected without guarantees of regular intevasti
allow for an informed selection of content by estimating a The procedure works as follows. Each time a node is
prospective source’s reputation beforehand. Liars or $iglts  encountered the friends lists are exchanged and saved in a
try then to influence ratings in the system about a user orfriendship graphG'r. The friendship graph is organized I
service. The similarity of direct and received ratings may Hevels, comprising nodes at the same distahé®m the local
evaluated to assess trust in future opinions [13], [14].vi@ich noden,. Edges only exist between nodes in sequenced levels.
the manipulation of ratings, Quercia et al. propose to stofde graph is constructed by a slightly modified breadth-first
them in tamper-proof tables certified by witnesses [15]].[16search (BFS) algorithm. The modification consists of altayvi
Note that all these approaches rely their trust at the ratingrious edges from nodes ify; to connect to the same single
level, which requires interactions in the first place, wiiler node inLy4 ;. For every node in the friendship graghs, a
approach focuses on a lower level of trust, social trust.  trust valuete; is calculated according to Algorithm 1.
Since one cannot prevent users from generating multiple
identities, one way to limit the influence of sybils is tOagorithm 1 Explicit Social Trust
proactively establish trust in the identities being geruim —1. ~~2 o4 (local nodeno)
classical networks, trust is established by a certificateaaity — 2: e; ;: Edge fromn; ton;
(CA) through a public key infrastructure (PKI) [17]. In & pur i; g f:z-Ffiztnggﬂitglgfr‘gpﬁ”ggsnds oh;
opportunistic network this approach is useless since nalfixa: ;. expiicit social trust value of;
infrastructure and thus no authorities can be assumed. Bhe @: L,: Set of nodes with distancg from ng in Gg
duty can, however, be distributed to nodes which can gemeraf t¢i=1Vn; € L1
their own credentials and sign certificates of others whef " 2uioer . rob o o O ey
paired. Following this track, Capkun et al. [18] allows sty 10:  build Gr and getLy V d
build certificate chains similar to PGP under the assumpifon11:  for all ¢ >1 do
unconditional transitivity of trust along the chain patgher 12: for all mj in La. do teg
approaches limit trust exclusively to consciously selectés: tej = > maz(>, op . 1, 0)-d
friends [7] (non-transitive) or small groups [19]. Our apach . end for | E R e R
relies on both friend ties and conditional transitivity ofigt, 15: end for
depending on hop distance and social interconnection. 16: end for
Besides crypto-related approaches, trust establishnaant ¢

leverage mobility properties and network structures usi®y  The algorithm gives all direct friends a trust value bf
rich set of Complex social network tools. For instance, camma portion of each node’s trust propagates to the next |eve|,
nity detection algorithms extract the underlying struetwith  depending on the number of child nodes, resulting in each
the highest modularity when fed with a network topology [20hode receiving some trust from each parent node. This eesult
[21], [22]. Distributed versions for opportunistic netsrsuch jn more trust for well connected nodes (i.e. with many parent
as proposed by Hui et al. [6], [23] classify users in différethodes). Since the number of nodes increases with each level,
categories i.e., friends, familiar strangers, and strengeach a node’s trust decreases with the hop distahagepending on
category can be assigned different trust values e.g., tosehothe connections to the previous level. To force this deereas
trustworthy forwarders in DTNs. This approach, howevef sparse graphs, e.g. chains, a minimum degradation factor
defines strict categories and was not designed with secufiyintroduced.
that cpmmunity detection algorithms are not suited forttrug, Figure 1. The root of the graph is the local node followed by
establishment and propose a novel approach next. the direct friends on level;. The dashed lines are friend ties
that exist, but are ignored by the algorithm, since the nades
on the same level. In the circle are the trust values cakedlat
In the following, we propose two kinds of complementaryy the root node withe = 2. The algorithm allows fote > 1
social trust,explicit andimplicit, and how to combine them. which is the case for one of the nodes by Since no node
) ] o ) should be more trusted than a direct friene is bound tol.
A. From Friend Ties to Explicit Social Trust An evaluation of the performance, the expected trust distri
The central elements of explicit social trust are consdjousbution, and security concerns will be given in Section IV-A.
selected friend ties. Due to the mobility of the devicesrsise
can establish secure and reliable friend ties whenever theyAccording to Swamynathan et al. [24] transitivity is valid fgp to 6 hops.

I1l. SocIAL TRUSTESTABLISHMENT



phone | protein | facebook | SW CAVE SF
# nodes 76 1846 63730 100 100 100
avg. degree 2.95 2.39 25.64 ~4.00 | ~4.00 | ~3.80
diameter 9 19 14 ~8.3 ~115 ~7.2
clustering coeff.| 0.26 0.07 0.15 ~0.26 | ~0.50 | ~0.05
TABLE |

RAW GRAPH PROPERTIES
C. Combining Metrics

The explicit and implicit social trust can be combined to-
gether to a consolidated social trust value. A trusted aution
partner is then identified if the consolidated trust is abave
certain thresholdh,,,, i.e.: w, - t. + w; - t; > th;, wherew,

B. From Contacts to Implicit Social Trust and w; represent the weights for explicit and implicit trust,

In everyday life, there are certain individuals we regylarl€Spectively. The weighting of both trust values may depend
share the same space or activity with, i.e. the familiaresgn On the user and environment as discussed in Section V.
familiars can be easily identified by analyzing contact dara IV. EVALUATION

and/or contact frequency of the surrounding peers andrahari . ) . . .
this information w(iqth tho);e. gp e In this section we determine the complexity of establishing

The advantage of this approach is the automatic operatibHSt analyze how trust propagates and discuss seculatgde
without the need for conscious user interactions (e.girggir aspects, such as the reglllence to sybils, using real-yvorlq
Compared to the friendship graph, the mobility dynamit%aphs as well as synthetic graph models. The evaluation is
are captured, resulting in more opportunities to establigene for both, the implicit and explicit social trust, whase
trusted relations in the vicinity. However, this approaahrot the evaluatlon_of the combined social trust is omitted due to
guarantee that a certain entity is behind the proclaimentigge SPac€ constraints and left for future work
and thus is not as secure as explicit social trust. Nevesel o Explicit Social Trust

a certain amount of trust in a familiar can be justified since We rel th | Id h isti f the ph
the identity cannot be a fast living, which is useful against ''c €Y On three real-worid graphs consisting of the phone
sybil attacks. records of the MIT Reality traces [25], the protein inteiact

network [26] and the facebook graph from the New Orleans
network [27]. Some properties of the raw graphs are shown
in Table I. Additionally, synthetic graphs based on the $mal

world (SW), caveman (CAVE) and scale-free (SF) model were

Fig. 1. Friendship Graplé: p

Algorithm 2 Implicit Social Trust
1: n;: A node (local nodeng)

%Z ?Js';??gﬁg.tr’f.xg}u%f gﬁSJ? " used. For all graphs, edges represent friend ties (i.eursec
4: ti;: Implicit social trust value of; pairing). These graphs are processed to compute the frignds
g; f{)‘?ai %cj)]dg;;h in proximity do graph (Gr). The Watts and Strogatz model [28] is used to
7:  updatefo,; construct the small-world graph. Thenodes of the network
8:  acquiref; from n; are arranged to a ring and edges are establishedwafttiheir
9. forall n, ‘}0 v fon o neighbors. Then, each edge is rewired with a probabjlitg
10: tij = % + fOT : ﬁ a random node outside the neighbors. The same is done
\,9« B0 TR RO for the caveman modelk + 1)-cliques are build and each

_ familarity similarity edge is rewired to a node outside the clique with probability

E eng?grfor p. The caveman model differs from the small-world model by

having non-overlapping communities. In the scale-free ehod
each node is assigned a popularity according to the power law
. Y distribution with minimum values and shapex. Then, nodes
ity of the nodes. Familiarity denotes the accumulated ant re chosen independently at random and connected according

tlme”and S.'m'.la”ty describes to which gJegree two nod 3 their popularity. The parameters that were used for the
familiars coincide. Both values are normalized, so the séim f?)llowing evaluation, arer — 100, k = 4, p = 0.01, s = 2

;:Lfafamrg'.?gﬂfs aa?ld:s” S'_m'Iar;gegéfeegmkef;lg.?]””;gczkksfg]seanda = 2 unless otherwise specified. All simulations results
lliarity valuesfo,; up y pIng are the average over all possible combinations with meltipl

connection times ‘.N'th the ;urroundmg nodes similar tollmgu runs for the synthetic models. The graphs represent thdystea
community detection algorithms [6]. The set of all familigr state regime of pairing i.e., after one has paired with mést o

value(:js IS Iexcr}anged v_wtht_all e?iﬁuntergdhtngdesé thuks IVIPG trusted friends and has encountered most of his possible
a node a flocal approximation of the weighted NEWork grapil yacts to acquire their list of paired friendsR;). We leave

at 2 hops. The implicit social trusti; in another nodg is o analysis of the transient behavior with respect to nitgbil
calculated by adding its familiarity and similarity (seenki nd pairing dynamics for future work

10 in Alg. 2). This results in a trust value in the range [O,Zf Complexity: The calculation of the trust valués, can be

whereas values greater tharare negligibly rare. performed during the construction 6fr by the modified BFS
algorithm resulting in a complexity o (b%) with b being

Implicit social trust relies on the familiarity and the sler

2Two hops are enough, since the purpose of implicit trust issses the
surrounding nodes. For further hops, explicit trust or autafon system has
to be used. 3Thanks to Alan Mislove for the data set.
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Fig. 3. Mean trust per node for increasing network size To analyze the influence of generated sybil users of one

compromised node, we consider two scenarios that differ in

the branching factor (i.e. number of friends) andeing the the strategy used to add sybils to the graph (see Figures
depth of the resulting tree. To improve scalability for g  4(a) and 4(b)). In Scenario 1, all sybils are connected to the
we treat nodes with a trust value beld)1 as leaves, thus compromised node whereas in Scenario 2, a chain of sybils
ignoring all links they might have to lower levels of the tre€is built. Figure 5(a) shows for Scenario 1, the ratio of trust
This reduces the average time for trust computation by 994signed to a sybil by all other nodes to trust a legitimate
for the facebook graph. node gets on average. We compute this ratio (or percentage)

Regarding the communication overhead, it depends only as a function of the number of generated sybils under the
the amount of friends a node has and thus scales @it). compromised node. For all graphs, the trust in a sybil is neve

Trust Propagation: Algorithm 1 makes sure, each directas high as in a normal user and decreases with the increasing
friend has a trust value of. Trust propagates through thenumber of sybils. It converges quickly to a low percentage
direct friends to their friends on the next level and so one Orand actually, considering a trust thresholdoof, only up to
property of our algorithm is that the overall trust per lewel’; 10 sybils have an assigned trust value above it. The special
is constant i.e.Yd, T, = Ty = |L1|. As the tree widens, trust sybil userSs from Figure 4(a) is less dependent on the amount
is divided among more nodes and at some point the individuzl sybils and stabilizes at arourid — 20% as can be seen in
trust becomes negligible. Figure 5(b). Similar results are obtained for Scenario 2 but

Figure 2 shows the average trust value (with std. dewaje not shown due to space constraints. A more severe case
assigned to nodes for a given level (or hop distance) for a¥ould be to have cooperating compromised nodes, resulting
graphs. For the calculation ak, c is set to2 and nodes in better connectivity for the generated sybils. This scena
with te < 0.01 are treated as leaves, resulting in no node®t evaluate since we assume that the infiltration of an hctua
having trust past a distance of 5. The dotted lines mark thede is hard.
trust values of0.1 and0.01 as a reference. We can see that Why Not Use Certificate Chained-Based Approaches:
most of the nodes achieving a trust value higher thanare With PGP or Capkun et al. [18], trust is transitive indepen-
under 3 hops away. Furthermore, this trust value is a goddntly of the chain length or the number of disjoint paths.
tradeoff to capture a large portion of the network that cilh stA sybil user would thus only need to establish one trusted
be reasonably trusted. The trust values in the facebookhgraplation to gain full trust with all the others. Other apprbeas
degrade faster over the hop distance due to the graph’s hgyth as [7] do not allow for transitivity and only paired frés
average node degree (see Table I). A fast degradation with raye trusted. Therefore sybils have to establish trust with a
distance does not mean that the total amount of distributeidtims one by one. This conservative approach increases ti
trust (", 7,) is smaller as Table li(a) shows. Actually, theand complexity resulting in very sparse trust relations.
amount of trust received by a node mainly depends on itsOur approach is a tradeoff between those approaches that
degree as shown next. Figure 3 shows the average total tmittws friendship transitivity depending on the hop dis&n
per node inG for different network sizes. The mean trust peand connectivity in the social graph. Trust in well-coneeict
node degree is arouridé for all the graphs. From both figures,friends of friends will increase the number of trust relato
we can conclude that the propagated trust does not dependiansimilar to Sybilguard [9], sybil users are ignored besgau
the network size nor its structure but on the average dedreeob their low social interconnection.
a node. This makes our approach highly scalable. . _

Security: Since explicit trust is based on pairing, its reB- Implicit Social Trust
silience relies on the user’s understanding of the negeséit To evaluate implicit social trust we use two real-world
only selecting trustworthy peers to pair with. Neverthslestraces consisting of the MIT Reality traces [25] and the
a device may be compromised with malware, an orthogortdhggle Infocom’05 traces [5]. Additionally, two synthetic
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(a) Explicit Trust Value Statistics

(b) Implicit Trust Value Statistics

phone | protein | facebook | SW CAVE SF MIT Haggle | SW | CAVE
Total distributed trust per node 4.61 3.91 46.93 6.87 5.80 6.50 Total distributed trust per node 2.00 2.00 2.00 2.00
# nodes w/ trus® 0.10 8.2 6.4 50.4 12.5 9.5 12.3 # nodes w/ trus® 0.10 5.4 2.5 6.7 8.6
# nodes w/ trust> 0.01 16.4 225 515.8 29.75 20.4 37.9 # nodes w/ trust> 0.01 26.65 37.3 30.7 | 22.49
TABLE I
TRUSTVALUE STATISTICS
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= 30f — ‘ 1 algorithm of Blondel et al. named Louvain [21]. Figure 6
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3 oL IgIIN | all nodes assigned to the categories identified by the Lauvai
g OEOO] algorithm (i.e. community member, in related communityt no
2l ' [ 55 (55 5 In community). The dotted line marks the trust valuedf
5 10f —<— phone 1 .
b SF l l J 1 J l and 0.01 as a reference. The correlation of trust values and
= O_CAVE| | ‘ ‘ ‘ ‘ | the Louvain categories is evident, our algorithm can hence
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indirectly expose the structure of the local communities in
the network. The caveman process has a clear community

(b) Trust for Special Sybil
Fig. 5.

structure, thus lacking related communities and showirgy th
best correlation. The communities detected in the realevor

bil based I d (SW traces are large, resulting in large trust variances.
mobility contact processes based on small world (SW) an Security: The main goal of implicit social trust is to make

caveman (CAVE) graphs were _used. The _underlylng grapgﬁre the node is not a fast switching identity. The process
are constructed as described in the previous section apgrtsqianing trust should be resilient to attacks. Alganita
from k bemg'set t010. _The contacts are simulated in th ssesses trust of a node by the node’s familiarity and gitgila
followmg way: a n.Ode”i IS chosen uniformly at random andTo become trusted with a target, with respect to normalized
|ts’ contact nOde.LJ' is chosen u_mformly at rgndom elth_er fromI‘amiliarity, an attacker would have to increase its fanitia
n;’S neighbors in the underlying graph with probabiligyor 54 gecrease the familiarity of all the target's familigfer
from all n _nodes with pro_bal_:nhty(l - .Q)' T_hg duration of the former, the attacker needs to be physically near thetarg
a contact is power law distributed with minimum valsg 5. for the latter, to jam all beacons in the targets surringnd
and shapen. For the following evaluatior80000 contacts which requires a big effort and is easily detectable. Lilgmyi
are generated witly = 0.5 and the valuesq, = 20 and 4,0 similarity can be forged by increasing the familiaritithw
aqn = 1 for neighbors andsq, = 5 and aq, = 2 for the 5" hoges in the targets familiar set, also requiring phaisic
random coptacts. ) , .. presence. Cooperation among the sybils may also improve

Complexity: Algorithm 2 considers only 0”26’5 familiars their received trust by pretending high similarity. Howeve
and their familiars and has thus complexi®(b°), b being yansitivity of trust is very limited and sybils have to beepent
the branching factor, i.e. the average number of familiarg, yain influence, hence the incorporation of additionailsyb
Although the complexity is much lower than for the explicilys for the explicit social trust is not as effective but wel wil
social trust withd > 2, it can still be computationally intensive gy5|uate possible attack scenarios and enhance our approac
for a large number of familiars. In order to keep this aspegi future work. Nevertheless, mobility anomaly detecti a
under control, an appropriate aging mechanism is necessgif| as other sybil countermeasures [8], [10] can be used to
as discussed in the next section. further increase the effort needed for an attack.

As far as data transfer is concerned, only the list of \why Not Use Classical Community DetectionOne may
familiarity values has to be exchanged, thus the exchangggnder why we did not use a community detection algorithm
data is in the order o®(b) such as the one proposed by Hui et al. [6] in the first place

Trust Propagation: The maximal propagated trust per nodgince our approach achieves the same, indirectly. The measo
is bound to 2 as seen in Table lI(b). Half of the assigned teustis their discrete output and ease of manipulation espgdial
based on the familiarity and the rest is based on the sinyilartistributed versions. A community detection algorithmaliu
of the nodes (see Alg. 2). Although the amount of trust isas a binary output, either a node is in one’s community ar not
limited, the number of trusted nodes are still comparable Hierarchical algorithms (e.g. Louvain) may produce a non-
explicit social trust (compare Table li(a) and li(b)). binary output, but mapping the hierarchies to trust vales i

To understand how our algorithm behaves, we comparedsiill inaccurate and not very meaningful. Since nodes at the

Sybil Scenario 1



core of a community and at the border should not have thed scalable algorithms to assess explicit and implicitatoc
same trust values, especially in large communities, dabsitrust. We have shown that approaches such as PGP-like chains
community detection is insufficient. and community detection are not suited for trust establesttm

The bigger issue however, is the manipulation-pronendssopportunistic networks. With our approach, the number of
of distributed community detection algorithms. The thrée d influential sybils in bounded e.g., to a maximum of 10 for
tributed algorithmsSimple k-CliqueandModularity proposed SW graph g = 4), independently on the network size. We
by Hui et al. can all be manipulated in several ways by drelieve that our approach has many fields of applicabilwynr

attacker in order for him/her to be included in a communitgecuring DTN routing/forwarding to more resilient repidat
by exchanging manipulated familiarity and community sety/stems.

for example. With our approach, trust assigned to a node
only depends on direct observables (i.e. contact timejowit
relaying on information received by that node (i.e. the sodel!!
familiars set). 2]
V. DiscussiON ANDFUTURE DIRECTIONS ﬁ]
One rationale behind our approach using explicit and im5]
plicit social trust is to have smooth levels of trust between
untrusted and trusted relations as in real-world socialoits. (g
Transitivity in certification chains and community detecti
define no barriers or strict barriers among social categpriel]
respectively, which may not reflect reality accurately. (8]
We have, however, not discussed thoroughly how to weight
explicit and implicit social trust. Depending on the enviro [°]
ment (e.qg., friendly vs. unfriendly), explicit and implicocial
trust should be weighted dynamically, for example, by patti [10]
more weight in the former in unfriendly environments. Buflll
actually even explicit trust itself could output differemmtist
values by not treating equally direct friend ties (and theit2]
successors in the graph) such as co-workers, schoolmatfsﬁ,
friends or family members with whom we are paired; thi
to reflect different trust for different affairs. Also retat [14]
to the environment is the representativeness of the implici
social graph as a user will evolve in different communitie
with time. An aging mechanism has to be applied to remoys]
old or random encountered users and not end up with[la}]
cligue resulting in a meaningless even structure. Prelnyin
results show that dynamic aging based on the online conté&f
aggregation approach by Hossmann et al. [29] provides m?{&
robustness to the implicit social trust by searching fordpe
timal representation of the current underlying social roeky
So far, we assumed users to be embedded in social efgf!
ronments with social trust (either explicit, implicit or . [21)
But what if none of the surrounding peers is in either social
graphs such as a user traveling alone in a new city? Then[gﬂ
interactions would be triggered. In this case, adaptingn@agi
to fast changing environments would help. As an alternativié3]
reputation systems can provide higher levels of trust. iet,e [24]
security can be brought to received ratings by weightingnthe
with the social trust and hence counteract liars (sybilgjufe
work must investigate the interrelation between sociattaund
reputation systems. [26]
For all these reasons, we will further investigate how we
can leverage and adapt to the context and environment.

(25]

(28]
VI. CONCLUSION
In this paper, we have shown the importance of reconsi@?]
ering the fundamental level of trust in opportunistic neatkgo
i.e., trust in an identity being genuine and honest as opgptuse
fake identities also known as sybils. We proposed two secure
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