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1 Introduction

Epistemic modal logic is an important tool in the area of distributed and multi-
agent systems. An introduction and overview is given by the classic [10]. Recent
work in this tradition includes, for instance, the study of the epistemic principles
underlying blockchain mechanisms [5, 15, 21].

Another current line of research is concerned with combinatorial topologi-
cal models of distributed systems and the development of corresponding modal
logics [9, 17]. They give rise to new notions of group knowledge [7, 14] and new
epistemic dynamic principles [13].

Modal logic cannot formalize the justifications underlying knowledge. This
is remedied in justification logic. It replaces the �-modality from modal logic
with explicit terms [3, 18]. That is, instead of formulas �φ, meaning φ is known,
justification logic includes formulas of the form t : φ, meaning t represents a proof
of φ. Originally, Artemov [1] introduced justification logic to give a classical
provability semantics to intuitionistic logic. Since then, justification logic has
been adapted to many epistemic and deontic use cases [2, 6, 11, 19, 22].

The first part of this talk deals with synergistic knowledge, a novel form
of distributed knowledge. It is based on [7], which is joint work with Christian
Cachin and David Lehnherr. The second part presents an epistemic model of
zero-knowledge proofs in justification logic. It uses results from [20], which is
joint work with David Lehnherr and Zoran Ognjanović.

2 Synergistic Knowledge

In modal logic, distributed knowledge of a group is usually defined as the knowl-
edge that the group would have if all its members share their individual knowl-
edge. This model, however, does not consider relations between agents. In this
section, we discuss the notion of synergistic knowledge, which makes it possible
to consider different relationships between the members of a group.

To do so, we use a novel semantics for modal logic that is based on sim-
plicial complexes. With this semantics, a group of agents may know more than
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just traditional distributed knowledge. Our logic features epistemic operators
supporting a principle that could be paraphrased as the sum is greater than its
parts, hence the name synergistic knowledge.

The following semantic definitions and the logic of synergistic knowledge have
first been presented in [7].

Let Ag denote a set of finitely many agents and let

Agsi = {(A, i) | A ⊆ Ag and i ∈ N}.

The pair (a, i) ∈ Agsi represents agent a in local state i. Further, let S ⊆ Agsi.
An element (A, i) ∈ S is maximal in S if and only if

∀(B, j) ∈ S.|A| ≥ |B|, where |X| denotes the cardinality of the set X.

Definition 1 (Simplex). Let ∅ 6= S ⊆ Agsi. S is a simplex if and only if

S1: The maximal element is unique, i.e.

if (A, i) ∈ S and (B, j) ∈ S are maximal in S then, A = B and i = j.

The maximal element of S is denoted as max(S).
S2: S is uniquely downwards closed, i.e. for all (B, i) ∈ S and ∅ 6= C ⊆ B

∃!j ∈ N.(C, j) ∈ S, where !∃j means that there exists exactly one j.

S3: S contains nothing else, i.e.

(B, i) ∈ S and (A, j) = max(S) implies B ⊆ A.

Definition 2 (Complex). Let C be a set of simplexes. C is a complex if and
only if

C: For any S, T ∈ C, if there exist A and i with (A, i) ∈ S and (A, i) ∈ T , then

for all B ⊆ A and all j (B, j) ∈ S ⇐⇒ (B, j) ∈ T.

Definition 3 (Indistinguishability). Let S ⊆ Agsi, we define

S◦ = {A | ∃i ∈ N : (A, i) ∈ S}.

An agent pattern is a subset of Pow(Ag) \ {∅}. For two simplicies S and T and
an agent pattern G, we define S ∼G T if and only if G ⊆ (S ∩ T )◦. In this case,
we say that G cannot distinguish between S and T .

Based on this indistinguishability relation we can define an epistemic logic.
We start with a countable set of atomic propositions Prop. Formulas of the
language LSyn are inductively defined by:

φ ::= p | ¬φ | φ ∧ φ | [G]φ

where p ∈ Prop and G is an agent pattern. The remaining Boolean connectives
are defined as usual. In particular, we set ⊥ := p ∧ ¬p for some fixed p ∈ Prop.
Further, let G be an agent pattern. We define the formula alive(G) to be ¬[G]⊥.
For a single agent a we write alive(a) instead of alive({a}).
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Definition 4 (Model). A modelM = (C, V ) is a pair where

1. C is a complex and
2. V : C→ Pow(Prop) is a valuation.

Definition 5 (Truth). Let M = (C, V ) be a model, w ∈ C, and φ ∈ LSyn. We
defineM, w  φ inductively by

M, w  p iff p ∈ V (w)

M, w  ¬φ iff M, w 6 φ

M, w  φ ∧ ψ iff M, w  φ andM, w  ψ

M, w  [G]φ iff w ∼G v impliesM, v  φ for all v ∈ C.

We writeM  φ ifM, w  φ for all w ∈ C. A formula φ is valid ifM  φ for
all modelsM.

The following formulas are valid:

[G](φ→ ψ)→ ([G]φ→ [G]ψ) (K)
[G]φ→ [G][G]φ (4)
φ→ [G]¬[G]¬φ (B)

[G]φ→ [H]φ if G ⊆ H (Mono)
alive(G) ∧ alive(H)→ alive(G ∪H) (Union)

alive(G)→ alive({B}) if there is A with A ∈ G and B ⊆ A (Sub)
alive(G)→ alive({A ∪B}) if A,B ∈ G (Clo)

alive(G)→ ([G]φ→ φ) (T)

We finish this section with an example. Consider the complex given in Fig-
ure 1. It consists of two simplices, each being a tetrahedron. They share the
vertices a0, b0, and c0. They also share the edges (a0, b0), (b0, c0), and (c0, a0);
but they do not share a face (a0, b0, c0). Instead, there are two faces between
these three vertices: one belonging to the upper tetrahedron, and one belonging
to the lower tetrahedron.

Formally this complex is given by


abcd0
abc0, abd0, acd0, bcd0

ab0, bc0, ac0, ad0, bd0, cd0
a0, b0, c0, d0

 ,


abcd1

abc1, abd1, acd1, bcd1
ab0, bc0, ac0, ad1, bd1, cd1

a0, b0, c0, d1


 .

We denote the two simplicies of this complex by 〈abcd0〉 and 〈abcd1〉. We find
that

〈abcd0〉 ∼{{a,b},{b,c},{a,c}} 〈abcd1〉 (1)

and
〈abcd0〉 6∼{{a,b,c}} 〈abcd1〉. (2)
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a0 b0

c0

d0

d1

Fig. 1. Two tetrahedrons

(1) states that for the agents a, b, and c, having pairwise access to shared objects
is not sufficient for knowing (as a group) whether d is in state 0 or in state 1.
However, (2) models that if the agents a, b, and c have joint access to one shared
object, then they can distinguish d being in state 0 from d being in state 1,
i.e. they know in which state agent d is.

In distributed computing, such shared objects may be, for instance, shared-
coin primitives or consensus objects. The notions of agent pattern and synergistic
knowledge [7] can thus be used to analyze the concept of consensus number [16]
or the problem of the dining cryptographers [8].

3 A logical model of zero-knowledge proofs

A recent application of justification logic [20] to multi-agent systems is to give an
epistemic logic model of interactive proof systems and zero-knowledge proofs [4,
12]. These are protocols with the aim that an agent a has proof that an agent b
knows φ without having the justification for b’s knowledge. This may occur, for
instance, if b wants to convince a that b knows a password without revealing the
password.

An additional complication for a logical model of zero-knowledge proofs is
that a cannot be fully convinced that b knows φ, but with a very high probability.
Technically, this is done using the notion of negligible functions. For us, it suffices
to add probability operators such that P≈rφ states that the probability of φ is
almost r, i.e. infinitesimally close to r.
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We will not present the logic and its semantics here. Instead, we only mention
the key formulas in order to give an example of what can be expressed in this
framework.

The formula
t :b φ→ P≈1(f :a �bφ)

states that if t is b’s justification for knowing φ, then the protocol yields an f
such that with almost certainty, f proves to a that b knows φ. Now this does not
yet represent a zero-knowledge proof as b could simply transmit the justification
t to a. A zero-knowledge proof additionally satisfies

t :b φ→ P≈0(f :a t :b φ).

If t is b’s justification for knowing φ, then the probability that f proves to a
that t is b’s justification for knowing φ is negligible (where f is the result of the
protocol).

This formalization is not only interesting from the perspective of computer
science. It also that shows that for formal epistemology, it is important to
have both the implicit �a operator and the explicit t :a modalities. The zero-
knowledge protocol yields a proof f such that the probability of f :a �bφ is
almost 1 whereas the probability of f :a t :b φ is almost 0. It also formalizes the
fact that a can have higher-order knowledge of b knowing φ without knowing b’s
justification for that knowledge.
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