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Abstract. The increasing applications of AI systems require personalized ex-
planations for their behaviors to various stakeholders since the stakeholders may
have various knowledge and backgrounds. In general, a conversation between
explainers and explainees not only allows explainers to obtain the explainees’
background, but also allows explainees to better understand the explanations. In
this paper, we propose an approach for an explainer to communicate personalized
explanations to an explainee through having consecutive conversations with the
explainee. We prove that the conversation terminates due to the explainee’s jus-
tification of the initial claim as long as there exists an explanation for the initial
claim that the explainee understands and the explainer is aware of.
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1 Introduction

Explainable artificial intelligence (XAI) is one of the important topics in artificial intel-
ligence due to the recognition that it is important for humans to understand the decisions
or predictions made by the AI [11]. Understanding the behavior of AI systems does not
only improve the user experience and trust in such systems, but it also allows engineers
to better configure them when their behavior need to change. This is particularly im-
portant when AI systems are used in safety critical domains such as healthcare where
decisions made or influenced by clinical decision support systems ultimately affect hu-
man life and wellbeing. In such systems, related stakeholders and professionals must
understand how and why certain decisions are made [1].

An important requirement for explainable AI systems is to ensure that the stakehold-
ers with various backgrounds understand the provided explanations and the underlying
rationale and inner logic of the decision or prediction process [13]. For example, an ex-
planation of why we should drink enough water throughout the day that is formulated
in specialized medical terms may be understandable to medical professionals, but not
to young children who have no medical knowledge or background. Therefore, AI sys-
tems should be able to provide personalized and relevant explanations that match the
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knowledge and background of their stakeholders. Hilton [7] argues that an explanation
is a social process of conveying why a claim is made to someone. It is the conversa-
tions between explainers and explainees that allow explainers to obtain the explainees’
background and allow explainees to better understand the explanations.

In this paper, we propose a novel approach to automatically construct and commu-
nicate personalized explanations based on the explainer’s beliefs about the explainee’s
background. Our approach is based on conversations between an explainer and an ex-
plainee, and exploits tools and results from justification logic [3,9]. The first justification
logic, the Logic of Proofs, has been introduced by Artemov to give a classical provabil-
ity interpretation to intuitionistic logic [2]. Later, various possible worlds semantics for
justification logic have been developed [4,6,8,10], which led to epistemic interpreta-
tions of justification logic. We will use a logic that features both the modal ◻-operator
and explicit justification terms t, a combination that goes back to [5]. Our approach is
built on the idea of reading an agent understands an explanation E for a claim F as the
agent has a justification t for F such that t also justifies all parts of E . This is similar
to the logic of knowing why [14] where knowing why F is related to having a justi-
fication for F . With this idea, the explainer can interpret the explainee’s background
from his feedback and provide further explanations given what he has learned about the
explainee.

We first develop a multi-agent modular model that allows us to represent and rea-
son about agents’ beliefs and justification. We then model how the explainee gain more
justified beliefs from explanations, and how the explainer specifies his preferences over
available explanations using certain some plausible principles. We finally model the
conversation where the explainee provides his feedback on the received explanation
and the explainer constructs a further explanation given his current beliefs about the ex-
plainee’s background interpreted from the explainee’s feedback. Our approach ensures
that the conversation will terminate due to the explainee’s justification of the initial
claim as long as there exists an explanation for the initial claim that the explainee un-
derstands and the explainer is aware of.

2 Multi-agent Modular Models

Let Prop be a countable set of atomic propositions. The set of propositional formu-
las LProp is inductively defined as usual from Prop, the constant �, and the binary
connective →. We now specify how we represent justifications and what operations
on them we consider. We assume a countable set JConst = {c0, c1, . . .} of justification
constants. Further, we assume a countable set JVar of justification variables, where each
variable is indexed by a propositional formula and a (possibly empty) list of proposi-
tional formulas, i.e. if A1, . . . ,An,B ∈ LProp, then xA1,...,An

B is a justification variable.
Constants denote atomic justifications that the system no longer analyzes, and variables
denote unknown justifications. Justification terms are defined inductively as follows:

t ∶∶= c ∣ x ∣ t ⋅ t

where c ∈ JConst and x ∈ JVar. We denote the set of all terms by Tm. A term is ground
if it does not contain variables, so we denote the set of all ground terms by Gt. A term
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can be understood as a proof or an evidence. Let Agt be a finite set of agents. Formulas
of the language LJ are defined inductively as follows:

A ∶∶= p ∣ � ∣ A→ A ∣ ◻iA ∣ JtKiA

where p ∈ Prop, i ∈ Agt and t ∈ Tm. Formula ◻iA is interpreted as “agent i believes
A”, and formula JtKiA is interpreted as “agent i uses t to justify A”.

The model we use in this paper is a multi-agent modular model that interprets justi-
fication logic in a multi-agent context. It is a Kripke frame extended with a set of agents
and two evidence functions. In general, evidences accepted by different agents are dis-
tinct, so evidence terms for each agent are constructed using his own basic evidence
function.

Definition 2.1 (Multi-agent Modular Models). A multi-agent modular model over a
set of atomic propositions Prop and a set of terms Tm is defined as a tuple M =
(Agt,W, R̃, ∗̃, π), where

– Agt = {1,2} is a set of agents, we assume that it is always the case that agent 1
announces an explanation to agent 2;

– W /= ∅ is a set of worlds;
– R̃ = {R1,R2} for each agent in Agt, where Ri ⊆W×W is a reflexive and transitive

accessibility relation;
– ∗̃ = {∗1,∗2} for each agent in Agt, where ∗i is an evidence function ∗i ∶ Tm×W →
P(LProp) that maps a term t ∈ Tm and a world w ∈ W to a set of formulas in
LProp;

– π ∶ Prop→ 2W is an evaluation function for the interpretation of propositions.

We assume that the agents have finite reasoning power. Therefore, we restrict our mod-
els such that for each w ∈W and agent i,

– there are only finitely many t ∈ Gt such that ∗i(t,w) is non-empty, and
– for each t ∈ Gt, the set ∗i(t,w) is finite.

Moreover, for any agent i and world w, it is not necessary that

(F → G) ∈ ∗i(s,w) and F ∈ ∗i(t,w) imply G ∈ ∗i(s ⋅ t,w) ( †)

Definition 2.2 (Truth Evaluation). We define what it means for a formula A to hold
under a multi-agent modular modelM and a world w, written asM,w ⊧ A, induc-
tively as follows:

– M,w /⊧ �;
– M,w ⊧ P iff w ∈ π(P );
– M,w ⊧ F → G iffM,w /⊧ F orM,w ⊧ G;
– M,w ⊧ ◻iF iff for any u ∈W , if wRiu, thenM, u ⊧ F ;
– M,w ⊧ JtKiF iff F ∈ ∗i(t,w).

Other classical logic connectives (e.g.,“∧”, “∨”) are assumed to be defined as abbre-
viations by using � and→ in the conventional manner. We say that a formula A is valid
in a modelM, written asM ⊧ A ifM,w ⊧ A for all w ∈W . We say that a formula A
is a validity, written as ⊧ A ifM ⊧ A for all modelsM.
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We require that modular models satisfy the property of justification yields belief :
for any ground term t, agent i, and world w, if F ∈ ∗i(t,w), then for any u ∈ W , if
wRiu, thenM, u ⊧ F , which gives rise to the following validity:

⊧ JtKiF → ◻iF. (JYB)

Note that in contrast to usual models of justification logic, we require justification yields
belief only for ground terms (and not for all terms as is originally required in modular
models). The reason is that we interpret justification variables in a new way. Tradition-
ally, a justification variable stands for an arbitrary justification. Hence JxKiF → ◻iF
should hold: no matter which justification we have for F , it should yield belief of F .
In this paper, we use a different reading of justification variables. They stand for open
assumptions, which do not (yet) have a justification. Therefore, JxKiF will not imply
belief of F . Our modular model gives rise to the following validity due to the reflexivity
of the accessibility relations:

⊧ ◻iF → F.

Combining this with (JYB), we find that justifications by ground terms are factive: for
any ground term t and any formula F , we have

⊧ JtKiF → F.

Notice that our model does not respect the usual application operation (⋅) on evidence
terms due to the removal of constraint (†) from our model,

/⊧ JsKi(F → G)→ (JtKiF → Js ⋅ tKiG),

because agents are limited in their reasoning powers and thus might not be able to derive
all of the logical consequences from their justified beliefs by constructing proofs, which
becomes the reason why agents need explanations.

3 Understanding and Learning from Explanations

Given a claim, an agent can construct a deduction for a claim, which is what we call an
explanation of the claim in this paper. An explanation is inductively defined as a tree of
formulas.

Definition 3.1 (Explanations). Given formulas A1, . . . ,An,B ∈ LProp, a simple ex-
planation is of the form

A1, . . . ,An

B

An explanation, denoted as E , is inductively defined as follows: it is a simple explana-
tion or of the form

E1, . . . ,En
B

where E1, . . . ,En are explanations. We say that
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– B is the claim of E , denoted as claim(E) = B;
– Pr(E ,B) is the list of premises of B in E , that is, Pr(E ,B) = A1, . . . ,An if E is a

simple explanation; otherwise, Pr(E ,B) = claim(E1), . . . , claim(En);
– formula F in E is a hypothesis if Pr(E , F ) = ∅, and H(E) is the set of hypotheses

of E;
– formula F in E is a derived formula if Pr(E , F ) /= ∅, and D(E) is the set of derived

formulas of E .

One important property of justification logic is its ability to internalize its own no-
tion of proof. If B is derivable from A1, . . . ,An, then there exists a term t⋅x1 ⋅⋯⋅xn such
that Jt ⋅ x1 ⋅ ⋯ ⋅ xnKiB is derivable from Jx1KiA1, . . . , JxnKiAn.4 The justification term
t ⋅x1 ⋅⋯ ⋅xn justifying B represents a blueprint of the derivation of B from A1, . . . ,An.
In this section, we will define a procedure that can mimic the application operation on
terms to construct derived terms in order to internalize the deduction of an explanation.
Given an explanation, a derived term of the conclusion with respect to the explanation is
constructed with the justifications of the premises and the deduction from the premises
to the conclusion. Typically, if there exists any premises that the agent cannot justify,
then a variable is used for its justification in the derived term; if the agent cannot justify
the deduction, then a variable is used as the derived term.

Definition 3.2 (Construction of Derived Terms). Given a multi-agent modular model
M, a world w, an explanation E , and a derived formula B occurring in E , we define
agent 2’s derived term of B with respect to E inductively as follows:

– Case: B is the claim of a simple explanation E ′ = A1, . . . ,An/B. We distinguish
two cases:
1. If there exists d ∈ Gt such thatM,w ⊧ JdK2(A1 → (⋯→ (An → B)⋯)), then

the derived term has the form d ⋅ t1⋯tn where the terms ti are given by: if there
exists si ∈ Gt withM,w ⊧ JsiK2Ai, then set ti = si; else, set ti = xAi ;

2. otherwise, the derived term of B has the form x
Pr(E,B)
B .

– Case: B is the claim of an explanation E ′ = E ′1, . . .E ′n/B. We distinguish two cases:
1. If there exists d ∈ Gt such that

M,w ⊧ JdK2(claim(E ′1)→ (⋯→ (claim(E ′n)→ B)⋯)),

then the derived term has the form d ⋅ t1⋯tn where each ti is the derived term
of claim(E ′i) with respect to E;

2. otherwise, the derived term of B has the form x
Pr(E,B)
B .

Example 1. Assume that we have a multi-agent modular modelM. Agent 2 hears an
example E = A/B/C in world w, and it is the case that

M,w ⊧ JtAK2A
M,w ⊧ JdA→BK2(A→ B)
M,w ⊧ JdB→CK2(B → C)

4 This property requires a so-called axiomatically appropriate constant specification.
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for ground terms tA, dA→B , and dB→C , then the derived term of B with respect to E
is dA→B ⋅ tA, and the derived term of C with respect to E is dB→C ⋅ (dA→B ⋅ tA). If
agent 2 cannot justify A, then the derived term of C with respect to E would become
dB→C ⋅ (dA→B ⋅ xA); if agent 2 cannot justify A → B, then the derived term of C with
respect to E would become dB→C ⋅ xA

B .

Agent 2’s justification for a deduction can be seen as his reasoning capability and can
be different from agent to agent. If agent 2 cannot justify a deduction step, then the
deduction is beyond his reasoning capability. In the real life, agents’ reasoning capabil-
ities can be limited by factors such as ages, professions and experience. For example,
a mathematician can follow complicated mathematical proofs, while a primary student
can only follow simple mathematical proofs. Further, for a derived formula in an ex-
planation, agent 2 might have another term that has nothing to do with the explanation
to justify it. But using this term to justify the formula does not mean that agent 2 can
follow the explanation, so we need to require that a derived term be formed by justifi-
cation terms that are used to justify its premises and deduction in the explanation. We
should also notice that a derived term of a derived formula with respect to an explana-
tion might not be unique, because there might exist multiple terms for agent 2 to justify
the hypotheses in the explanation, making the derived terms different. Intuitively, an
agent understands an explanation if the derived term of its conclusion does not contain
any variables (unknown justification), i.e., it is a ground term.

Definition 3.3 (Understanding Explanations). Given a multi-agent modular modelM,
a world w and an explanation E , let t be agent 2’s derived term of claim(E) with re-
spect to E in world w. We say that agent 2 understands E in world w iff t is a ground
term.

Thus, if derived term t contains variables, meaning that there exists a hypothesis or a
deduction from E that agent 2 cannot justify, then agent 2 cannot understands E .

Example 2. In Example 1, agent 2 understands explanation E if the derived term of C
with respect to E is dB→C ⋅ (dA→B ⋅ tA); agent 2 cannot understand explanation E if the
derived term of C with respect to E is dB→C ⋅ (dA→B ⋅ xA) or dB→C ⋅ xA

B .

Once an agent hears an explanation, he can update his justification with derived
terms that he constructs, which means that the agent learns from the explanation and
has more justified beliefs.

Definition 3.4 (Learning from Explanations). Given a multi-agent modular model
M, a world w and an explanation E , after agent 2 hears E in w, M is updated as
M∣(2,w,E), whereM∣(2,w,E) = (Agt,W, R̃, ∗̃′, π) is defined as follows:

– for any F ∈D(E), ∗′2(t,w) = ∗2(t,w) ∪ {F}, where t is agent 2’s derived term of
F with respect to E;

– for any s ∈ Tm and any G ∈ LProp, if G ∈ ∗2(s,w), then G ∈ ∗′2(s[r/xclaim(E)],w)
and G ∈ ∗′2(s[r/x

H(E)

claim(E)
],w), where r is agent 2’s derived term of claim(E) with

respect to E;
– for agent 1, ∗′1(⋅) = ∗1(⋅).
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In words, after agent 2 hears explanation E in world w, for each derived formula F
in E , agent 2’s justification of F will be updated with its derived term t; the derived
term r of claim(E) with respect to E is substituted for every occurrence of xclaim(E)

and x
H(E)

claim(E)
in agent 2’s justification. Recall that agents in this paper have limited

reasoning powers and thus might not be able to derive all of the logical consequences
from their beliefs. Hearing an explanation allows agent 2 to gain new justified beliefs
by connecting existing justified beliefs. Note that we do not need to remove agent 2’s
epistemic access R2 to worlds where F does not hold in order to guarantee JYB. The
reason is as follows: if t is not a ground term, then agent 2 has yet to justify F and thus
agent 2’s belief should remain the same as before learning from explanation E ; if t is
a ground term, then agent 2 believes F due to the JYB constraint, and the belief of F
is ensured by the validity of the modal k-axiom (our model still respects the epistemic
closure). Other agents’ justification and epistemic access remain the same. As standard,
the resulting updated model is still a multi-agent modular model.

Proposition 3.1. Given a multi-agent modular modelM, a world w and an explana-
tion E , after agent 2 hears explanation E in world w, M is updated as M∣(2,w,E),
which is still a multi-agent modular model.

We then extend our language LJ with a new formula of the form [i ∶ E]φ, read as
“φ is true after agent i hears explanation E”, and its evaluation is defined with respect
to a multi-agent modular modelM and a world w as follows:

M,w ⊧ [i ∶ E]φ iff M∣(i,w,E),w ⊧ φ.

The learning process gives rise to some intuitive consequences. First of all, when agent 2
is already aware of the explanation before it is announced, agent 2 will not gain any new
justified from the explanation. Secondly, it is possible for agent 2 to gain justification
for the formulas that are not contained in the explanation, because the learning process
contains substituting derived terms of formulas for their corresponding variables, which
means that agent 2 can justify more than what an explanation has.

Since an explanation is defined as a formula tree, we have the sufficient and neces-
sary conditions for understanding an explanation: an agent understands an explanation
if and only if the agent can justify all the hypotheses and deduction steps that are used
in the explanation. Let G be a formula and L = A1, . . . ,An be a list of formulas. Then
the expressionÔ⇒

L
G stands for A1 → (⋯→ (An → G)⋯).

Proposition 3.2. Given a multi-agent modular modelM, a world w and an explana-
tion E , agent 2 understands explanation E iff

– for any F ∈H(E), there exists a ground term t ∈ Gt such thatM,w ⊧ JtK2F, and
– for any G ∈D(E), there exists a ground term s ∈ Gt such that

M,w ⊧ JsK2( Ô⇒
Pr(E,G)

G),

Conversely, if there exists a hypothesis that the agent cannot justify, or if there exists a
deduction step that is beyond the agent’s reasoning capability, the agent cannot under-
stand the announced explanation.
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Another important property about understanding and learning from an explanation
is that for an agent’s justified beliefs that have nothing to do with the explanation, it will
remain the same after hearing an explanation, and it was also the case before hearing
the explanation.

Proposition 3.3. Given a multi-agent modular model M, a world w and an expla-
nation E , if agent 2 constructs a derived term tF for each derived formula F with
respect to E , then for any ground term s ∈ Gt that does not contain tF and any formula
P ∈ LProp,

M,w ⊧ JsK2P ↔ [2 ∶ E]JsK2P.
The direction from left to right is the persistence principle saying that an agent’s beliefs
always gets expanded after hearing an explanation. The direction from right to left states
that if after hearing the explanation the agent believes P for a reason that is independent
on the explanation, then before hearing the explanation the agent already believed P for
the same reason. In other words, having terms in our logical language also allows the
agent to distinguish the justified beliefs due to the explanation from the justified beliefs
due to another, unrelated reasons, which purely modal logic cannot formulate.

Example 3. Continued with Example 1, suppose agent 2 uses term dB→C ⋅xA
B to justify

C because he cannot justify the deduction from A to B. After hearing explanation E , it
is the case that

M,w ⊧ [2 ∶ E]JdB→C ⋅ xA
BK2C.

Agent 2 continues to hear another explanation E ′ = A/D/B, and it is the case that

M,w ⊧ [2 ∶ E]JtAK2A,

M,w ⊧ [2 ∶ E]JdA→DK2(A→D),
M,w ⊧ [2 ∶ E]JdD→BK2(D → B).

Agent 2 then can construct the derived term of B with respect to E ′ as dD→B ⋅ (dA→D ⋅
tA),

M,w ⊧ [2 ∶ E ′][2 ∶ E]JdD→B ⋅ (dA→D ⋅ tA)K2B.

Moreover, according to the learning approach in Definition 3.4, dD→B ⋅ (dA→D ⋅ tA) is
substituted for every occurrence of xA

B in agent 2’s justification. Thus, the derived term
of C with respect to E becomes dB→C ⋅ (dD→B ⋅ (dA→D ⋅ tA)),

M,w ⊧ [2 ∶ E ′][2 ∶ E]JdB→C ⋅ (dD→B ⋅ (dA→D ⋅ tA))K2C.

Now we can summarize that a user-agent profile consists of his justified beliefs and
deductions. It is important for agent 1 to gain information about these two aspects of
agent 2 through having consecutive conversations with agent 2 in order to provide an
explanation that can be understood by agent 2.

4 Explanation Evaluation

In the previous section, we presented how agent 2’s mental state is updated after hearing
an explanation. In this section, we will investigate how agent 1 selects an explanation
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for announcement. First of all, an explanation is selected from the explanations that the
explainer agent are aware of, namely the explanations where all the hypotheses as well
as all the derived formulas are justified by the explainer agent with ground derived terms
with respect to the explanation. Secondly, an explanation that contains information that
the explainee agent cannot justify should not be selected. In order to express these two
requirements, we need to extend our language LJ with a new formula of the form △iP ,
read as ”agent i can justify P ”, and its evaluation is defined with respect to a multi-agent
modular modelM and a world w as follows:

– M,w ⊧△iP iff there exists t ∈ Gt such thatM,w ⊧ JtKiP .

Compared with formula JtKiP , the term t is omitted in formula △iP , meaning that
agent i can justify A but we don’t care how he justifies P . Because of the JYB con-
straint, we have the following validity:

⊧△iP → ◻iP.

Definition 4.1 (Available Explanations). Given a multi-agent modular modelM and
a world w, we say that an explanation E is available for agent 1 to agent 2 iff

– for any P ∈H(E), there exists t ∈ Gt such thatM,w ⊧ JtK1P ;
– for any Q ∈D(E), there exists s ∈ Gt such that s is a derived term of Q with respect

to E andM,w ⊧ JsK1Q;
– there does not exist P ∈H(E) such thatM,w ⊧ ◻1¬△2 P ;
– there does not exist Q ∈D(E) such thatM,w ⊧ ◻1¬△2 ( Ô⇒

Pr(E,Q)
Q).

Given a formula F as a claim and a set of formulas A as hypotheses, the set of agent 1’s
available explanations to agent 2 for proving F from A is denoted as

λM,w
1,2 (A,F ) = {E ∣ claim(E) = F,H(E) = A if A /= ∅, and

E is available for agent 1 to agent 2 givenM and w}.

We write λM,w(A,F ) when the agents are clear from the context.

Compared with agent 2 that needs to construct and learn derived terms of derived for-
mulas in an explanation, agent 1 has already justified all the derived formulas in an
explanation that is available to him by derived terms and makes sure that there does not
exist a hypothesise or a deduction that agent 2 cannot justify.

If an explanation is available to agent 1, he can announce it to agent 2. But when
there are multiple available explanations, agent 1 must select one among them given
what he believes about agent 2. The question is what principle agent 1 can hold for
explanation selection. First of all, agent 1 should select an explanation that is most pos-
sible to be understood by agent 2. Looking back at our definition of understanding an
explanation, we can say that one explanation is more possible to be understood by an
agent than another explanation if the former one contains more hypotheses and deduc-
tions that are justified by the agent than the latter one. Besides, agent 1 is supposed to
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make simple explanations, which means that explanations that contain less deduction
steps (i.e. derived formulas) are more preferable. Since the goal of agent 1 is to an-
nounce an explanation that can be understood by agent 2, it makes sense for the first
principle to have priority from the second one. In this paper, we impose a total pre-order
≾ over available explanations to represent the preference between two explanations with
respect to these two principles. For better expression, we use NM,w

1,2 (E) to denote the
set of hypotheses and deductions in explanation E that agent 1 is not sure whether agent
2 can justify or not.

NM,w
1,2 (E) = {F ∣M,w ⊧ ¬ ◻1 △2F, where F is a hypothesis in E , or

M,w ⊧ ¬ ◻1 △2( Ô⇒
Pr(E,F )

F ), where F is a derived formula in E .}

We might write NM,w(E) for short if the agents are clear from the context.

Definition 4.2 (Preferences over Available Explanations). Given a multi-agent mod-
ular model M and a world w, agent 1 provides explanations to agent 2, for any two
explanations E ,E ′, E ≾M,w E ′ iff

– ∣NM,w(E)∣ > ∣NM,w(E ′)∣; or
– ∣NM,w(E)∣ = ∣NM,w(E ′)∣ and D(E) ≥D(E ′).

As is standard, we also define E ∼M,w E ′ to mean E ≾M,w E ′ and E ′ ≾M,w E , and
E ≺M,w E ′ to mean E ≾M,w E ′ and E /∼M,w E ′. The above definition of the preference
between two explanations specifies how agent 1 selects an explanation to announce to
agent 2: given two available explanations E and E ′, agent 1 first compares two explana-
tions in terms of the number of hypotheses and deductions that might not be justified by
agent 1, and the one with less number is more preferable; if both explanations have the
same number of hypotheses and deductions that might not be justified by agent 2, then
agent 1 compares these two explanations in terms of the number of deduction steps in
the explanations, and the one with less number is more preferable. Using this approach,
agent 1 always cut out the part that he knows for sure that agent 2 can justify, or replace
some part of the explanation with a shorter deduction that he knows that agent 2 can
justify, making explanations shorter.

Example 4. Assume that we have a multi-agent modular modelM. In world w, agent 1
has two available explanations E1 and E2 to agent 2, where E1 = A/B and E2 = A/C/B.
Agent 1 believes that agent 2 can justify the deductions from A to B, from A to C, and
from C to B, but agent 1 is not sure whether agent 2 can justify the hypothesis A. In
this case, the numbers of hypotheses and deductions in E1 and E2 that agent 1 is not sure
whether agent 2 can justify are the same, namely N(E1)M,w = N(E2)M,w, so agent 1
needs to compare the numbers of deduction steps in E1 and E2. Because E1 is shorter
than E2, namely D(E1) <D(E2), we have E1 ≻M,w E2.

5 Conversational Explanations

Agent 1 has incomplete information about agent 2 in terms of his justified beliefs, but
agent 1 can gain more and more information through having feedback from agent 2
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on the explanations that agent 2 has announced. We first define agent 2’ feedback.
After agent 2 hears an explanation, he can evaluate whether he can understand the
explanation. So his feedback is defined inductively as a tree that is isomorphic to a given
explanation so that each node in the feedback tree corresponds to a specific formula in
the explanation.

Definition 5.1 (Explainees’ Feedback). Given an explanation E , agent 2’s feedback
on explanation E , denoted as F2(E), is defined as follows:

– if E = A1, . . .An/B, then F2(E) is of the form

f1, . . . , fn
fB

– if E = E1, . . .En/B, then F2(E) is of the form

F2(E1), . . . ,F2(En)
fB

where fk = 1(1 ≤ k ≤ n) iff agent 2 can justify Ak; otherwise, fk = 0; fB = 1 iff agent 2
understands E; otherwise, fB = 0. Given a formula F in E , we use F2(E , F ) to extract
the value in F2(E) that corresponds to agent 2’s feedback on F . We write F(E) and
F(E , F ) for short if the agent is clear from the context.

As we mentioned in the previous section, if agent 2 cannot understand a deduction step,
then he cannot understand all the follow-up deduction steps. Thus, if there exists one
node in F(E) that has value 0, all its follow-up nodes towards the root will also have
value 0. After hearing the feedback from agent 2, agent 1 can update his beliefs about
agent 2 in terms of his justified beliefs. Based on the way in which we define agents’
understanding on an explanation, agent 1 can interpret useful information from agent
2’s feedback. When agent 2 returns 1 for a hypothesis, it simply means that agent 2
can justify the hypothesis; when agent 2 returns 1 for a derived formula, it means that
agent 2 can understand the explanation for the derived formula, which also means that
agent 2 can justify the hypotheses as well as the deduction steps in the explanation. On
contrary, when agent 2 returns 0 for a hypothesis, it simply means that agent 2 can-
not justify the hypothesis; when agent 2 returns 0 for a derived formula but returns 1
for all of its premises, it means that agent 2 cannot understand the deduction from the
premises to the derived formula but can understand all of its premises. In particular,
when agent 2 returns 0 for a derived formula as well as some of its premises, agent 1
cannot tell whether the agent can justify the deduction in between. So agent 1 agent
will ignore the feedback with respect to this deduction step. Given the above interpre-
tation, agent 1 can remove his possible worlds where opposite information holds. We
first define the update of an agent’s epistemic state by a truth set (this is the usual defi-
nition for announcements [12]), then we define what an explainer agent learns from the
explainee’s feedback on a given explanation.

Definition 5.2 (Update by a Set of Worlds). Given a multi-agent modular modelM,
a subset of worlds X , and an agent i, we defineM updated with (i,X) by

M∣(i,X) = (Agt,W ′, R̃′, ∗̃, π′)

as follows:
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– W ′ =X;
– R′i = Ri ∩ (X ×X);
– R′j = Rj for any other agents j /= i;
– π′ = π ∩X .

Definition 5.3 (Learning from Feedback). Given a multi-agent modular model M,
the update ofM with agent 1 upon receiving agent 2’s feedback on the explanation E ,
formallyM∣(1,F(E)), is defined by a series of updates: for each formula F in E we
updateM with (1, UF ) where UF is given by

1. if F ∈H(E) and F(E , F ) = 1, then

UF = {w ∈W ∣ there exists a ground term t withM,w ⊧ JtK2F};

2. if F ∈H(E) and F(E , F ) = 0, then

UF = {w ∈W ∣ there is no ground term t withM,w ⊧ JtK2F};

3. if F ∈D(E) and F(E , F ) = 1, then

UF = {w ∈W ∣ there exists a ground term t withM,w ⊧ JtK2( Ô⇒
Pr(E,F )

F )};

4. if F ∈D(E),F(E , F ) = 0 and for all P ∈ Pr(E , F ) it is the case thatF(E , F ) = 1,
then

UF = {w ∈W ∣ there is no ground term t withM,w ⊧ JtK2( Ô⇒
Pr(E,F )

F )}.

Observe that the sets UF correspond to the characterization of understanding an expla-
nation given in Proposition 3.2. That means upon receiving feedback, an explainer agent
updates in belief on whether the explainee agent understood the given explanation.

Proposition 5.1. Given a multi-agent modular modelM, the updated modelM∣(1,F(E))
with agent 1 upon receiving agent 2’s feedback on the explanation E is still a multi-agent
modular model.

We then extend our language LJ with a new formula of the form [j ∶ F(E)]F , read as
“F is true after agent j hears feedback F(E)”. We set

M,w ⊧ [j ∶ F(E)]F iff M∣(j,w,F(E)),w ⊧ F.

This formula allows to express agent j’s updated epistemic state after hearing feedback
on an explanation. Note that we assume that the explainee’s feedback is truthful (other-
wise it could happen that the updated model does not contain the actual world anymore,
in which case we would need a truth definition similar to public announcement logic).

Proposition 5.2. Given a multi-agent modular modelM and a world w, agent 1 hears
feedback F(E) from agent 2 on explanation E in world w, for any formula F in E ,
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– if F ∈H(E) and F(E , F ) = 1, then

M,w ⊧ [1 ∶ F(E)] ◻1 △2F

– if F ∈H(E) and F(E , F ) = 0, then

M,w ⊧ [1 ∶ F(E)] ◻1 ¬△2 F

– if F ∈D(E) and F(E , F ) = 1, then

M,w ⊧ [1 ∶ F(E)] ◻1 △2( Ô⇒
Pr(E,F )

F ).

– if F ∈ D(E), F(E , F ) = 0 and for any P ∈ Pr(E , F ) it is the case that F(E , F ) =
1, then

M,w ⊧ [1 ∶ F(E)] ◻1 ¬△2 ( Ô⇒
Pr(E,F )

F ).

Using the background information about agent 2, agent 1 can further explain what
agent 2 cannot justify. However, agent 1 should always remember that its goal is to
answer the initial question from agent 2 instead of infinitely explaining what agent 2
cannot justify in the previous explanation. All of these require agent 1 to memorize the
conversation with agent 2. We first define the notion of conversation histories between
two agents, which always start with a question.

Definition 5.4 (Conversation Histories). A finite conversation history between agent
1 and agent 2 for explaining a propositional formula F is of the form

η = (1 ∶?F )(2 ∶ E1)(1 ∶ F(E1))⋯(2 ∶ En)(1 ∶ F(En)),

where E1⋯En are explanations made by agent 1 to agent 2. We use

pre(η, k) = (1 ∶?F )(2 ∶ E1)(1 ∶ F(E1))⋯(2 ∶ Ek)(1 ∶ F(Ek))

to denote the prefix of η up to the kth position.

Given a conversation history, agent 1 can decide the explanation to be announced. The
decision-making is formalized as a function E∗(η) that takes a conservation history
as an input. Basically, agent 1 needs to evaluate whether it is more worthy to further
explain what agent 2 cannot justify in the previous explanation, or find another way to
explain the initial question, given the current information about agent 2. Let us first use
why(F(E)) to denote the set of formulas that are supposed to have further explanation
given feedback F(E).

why(F(E)) = {P ∈ E ∣ F(E , P ) = 0 and
(P ∈H(E) or F(E ,G) = 1 for all G ∈ Pr(E , P )).}

The set why(F(E)) contains formulas in explanation E on which agent 2 asks for fur-
ther explanations and that are either hypotheses or derived formula whose premises
are justified by agent 2. The rest of unjustified formulas explanation E should not be
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explained, because it is not clear whether agent 2 cannot justify their premises or de-
ductions. As we mentioned before, agent 1’s goal is to answer the initial question from
agent 2. Thus, when looking for the most preferred explanations, agent 1 should not
only consider the explanations for the questions that were asked right now, but also the
explanations for the initial question.

Definition 5.5 (Most Preferred Explanations). Assume that we are given a multi-
agent modular modelM, a world w, and a conversation history

η = (1 ∶?F )(2 ∶ E1)(1 ∶ F(E1))⋯(2 ∶ En)(1 ∶ F(En)).

The set of the most preferred explanations with respect to η is given by a function E∗(η),
which is defined as follows.

M′ ∶=M∣(2 ∶ E1)∣(1 ∶ F(E1))∣⋯∣(2 ∶ En)∣(1 ∶ F(En))
X ∶= λM

′,w(∅, F ) ∪ ⋃
G∈why(F(2,En))

λM
′,w(Pr(En,G),G)

E∗(η) ∶= {E ∈X ∣ for any E ′ ∈X it is the case that E ′ ≾M
′,w E}

In words, given a conversation history η, agent 1 evaluates explanations from the set
λM

′,w(F ), which is the set of available explanations for the initial question regard-
ing F , and ⋃G∈why(F(En)) λ

M
′,w(Pr(En,G),G), which is the set of available expla-

nations for further explaining what agent 2 cannot understand in En, and chooses the one
that is most preferred based on the principles in Definition 4.2. For example, if agent 1
finds that it is too time-consuming to make agent 2 understand En, because any further
explanations contain too many deduction steps, then agent 1 might prefer explaining the
claim F in another simple way, if there exists one. It is also important to stress that the
evaluation is made with respect to modelM′ =M∣(2 ∶ E1)∣(1 ∶ F(E1))∣⋯∣(2 ∶ En)∣(1 ∶
F(En)), which means that agent 1 considers the latest information about agent 2 that
he can infer from conversation η.

Since explanations are conducted in a conversational way, it is of great importance
for the conversation to terminate. The conversation can terminate due to two reasons:
either agent 2 has justified the initial claim and thus does not ask any questions, or agent
1 cannot explain more. Apparently, we would like the first one to occur. The following
proposition expresses that our explanation approach ensures this desired property if
there exists an explanation that agent 2 understands and agent 1 is aware of.

Proposition 5.3. Given a multi-agent modular modelM and a world w, if there exists
an explanation E such that claim(E) = F , agent 2 understands E and agent 1 is aware
of E in world w, then there exists a conversation history

η = (1 ∶?F )(2 ∶ E1)(1 ∶ F(E1))⋯(2 ∶ En)(1 ∶ F(En)),

where Ek ∈ E∗(pre(η, k − 1)), such that

– M,w ⊧ [2 ∶ En]⋯[1 ∶ F(E1)][2 ∶ E1]JtK2F , where t ∈ Gt is a derived term that
agent 2 constructs with respect to E;
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– all the nodes in F(En) have value 1.

Proof. We first regard all the explanations that agent 1 is aware of for the claim F
as a tree that is rooted at F , denoted as TF . Every time agent 2 provides feedback
to agent 1’s previous explanation, agent 1 can have more information about agent 2
(the formulas and deductions that agent 2 can justify). With this information, agent 2
can remove certain formulas and deductions between formulas from TF so that the
explanations containing formulas and deductions that agent 2 cannot justify are not
available for agent 1 to agent 2 any more. Since agent 2’s feedback is always truthful
due to the reflexivity of the accessibility relations, agent 1 will not remove formulas and
deductions that agent 2 can justify from TF . Thus, if there exists an explanation E such
that claim(E) = F , agent 2 understands E and agent 1 is aware of E , then E will always
stay in TF . Using the approach defined in Definition 5.5 that allows agent 1 to look
back the explanations for justifying F in each round of explanation selection. Recall
that we have constraints on the evidence function: terms that can be used to justify a
formula F are finite, and the formulas can be justified by a given term are finite. These
two constraints ensure that a formula F has finitely many explanations (if there exists).
As E will always stay in TF and the explanations that can be used to justify F are
finite, E can be found by agent 1 through η. Therefore, if there exists an explanation
E such that claim(E) = F , agent 2 understands E and agent 1 is aware of E , there
exists η such that after η agent 2 can justify F . According to Definition 5.5, agent 1
only explains the formulas on which agent 2 asks for further explanations as well as
the initial claim. If some of the nodes in F(En) have value 0, which means that agent
2 has questions about En, then agent 2 cannot construct a ground derived term for F
with respect to E due to his learning approach in Definition 3.4, which contradicts the
previous conclusion. So all of the nodes in F(En) have value 1.

Example 5. We illustrate our approach using the example that was mentioned in the
introduction. A user u asks a chatbot c why he should drink more water. Because the
chatbot has no information about the user, he randomly announces explanation E to the
user, which is ”being sick can lead to fluid loss, so drinking more water helps replenish
these losses”, formalized as E = sick/fluid loss/drink water. However, the user
replies the chatbot with F(E) = 1/0/0, making the chatbot believes that the user can
justify that he is sick but cannot justify the deduction from sick to fluid loss,

M,w ⊧ [c ∶ F(E)][u ∶ E] ◻c △usick,

M,w ⊧ [c ∶ F(E)][u ∶ E] ◻c ¬△u (sick → fluid loss).

These express the chatbot’s belief about the user’s background after the chatbot hears
his user’s feedback F(E). Next, the chatbot needs to decide what to explain. Regard-
ing E , the chatbot can further explain why being sick can lead to fluid loss, namely
why(F(E)) = {fluid loss}. Besides, the chatbot can also explain why to drink more
water when being sick in another way. Suppose the chatbot recognizes that given his
belief about the user’s background it is too complicated to explain why being sick can
lead to fluid loss, namely E ′ = sick/⋯/fluid loss, but he can simply tell the user
that being sick can make you thirsty, so you should drink more water, formalized as
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E ′′ = sick/thirsty/drink water. Given the conversation history

η = (c ∶?drink water)(u ∶ E)(c ∶ F(E)),
the chatbot believes that the user can justify the deduction from sick to thirsty and
from thirsty to drink water in E ′′. Using the principles in Definition 4.2, the chatbot
specifies the preference over E ′ and E ′′, and gets E ′ ≺M′,w E ′′, where M′ =M∣(u ∶
E)∣(c ∶ F(E)). Thus, the chatbot announces E ′′ to the user. Since the chatbot’s belief
about the user is always true, the user can justify all parts in E ′′ and thus understand E ′′.
More precisely, assume that t, s, r ∈ Gt, and

M,w ⊧ [c ∶ F(E)][u ∶ E]JtKusick,
M,w ⊧ [c ∶ F(E)][u ∶ E]JsKu(sick → thirsty),
M,w ⊧ [c ∶ F(E)][u ∶ E]JrKu(thirsty → drink water).

The user then constructs term s ⋅ t for thirsty and term r ⋅ (s ⋅ t) for drink water with
respect to E ′′, and gains more justified beliefs accordingly after hearing E ′′,

M,w ⊧ [u ∶ E ′′][c ∶ F(E)][u ∶ E]Js ⋅ tKuthirsty,
M,w ⊧ [u ∶ E ′′][c ∶ F(E)][u ∶ E]Jr ⋅ (s ⋅ t)Kudrink water.

Therefore, the user’s feedback on E ′′ is F(E ′′) = 1/1/1. After the chatbot hears this
feedback, the conversation terminates.

6 Conclusion

It is important for our AI systems to provide personalized explanations to users that
are relevant to them and match with their background knowledge. A conversation be-
tween explainers and explainees not only allows explainers to obtain the explainees’
background and but also allow explainees to better understand the explanations. In this
paper, we proposed an approach that allows an explainer to communicate personalized
explanations to explainee through having consecutive conversations with the explainee.
It is built on the idea that the explainee understands an explanation if and only if he can
justify all formulas in the explanation. In a conversation for explanations, the explainee
provides his feedback on the explanation that has just been announced, while the ex-
plainer interprets the explainee’s background from the feedback and then selects an
explanation for announcement given what has learned about the explainee. We proved
that the conversation will terminate due to the explainee’s justification of the initial
claim as long as there exists an explanation for the initial claim that the explainee un-
derstands and the explainer is aware of. In the future, we would like to extend our
approach with another dimension for evaluating explanations: the acceptance of expla-
nations. The explanation that is selected by the explainer should be not only understood,
but also accepted, by the explainee. For example, a policeman does not accept an ex-
planation for over-speed driving due to heading for a party. For this part of study, our
framework needs to be enriched with evaluation standards such as values and personal
norms. On the technical level, we would like to extend our logic so that the explainer
can reason about the explainee’s feedback for gaining information about the explainees’
background according to our idea about understanding explanations.
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