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ABSTRACT.Justification logics are epistemic logics that explicitly include justifications for the
agents’ knowledge. We develop a multi-agent justification logic with evidence terms for in-
dividual agents as well as for common knowledge. We define a Kripke-style semantics that is
similar to Fitting’s semantics for the Logic of ProofsLP. We show the soundness, completeness,
and finite model property of our multi-agent justification logic with respect to this Kripke-style
semantics. We demonstrate that our logic is a conservative extension of Yavorskaya’s minimal
bimodal explicit evidence logic, which is a two-agent version of LP. We discuss the relationship
of our logic to the multi-agent modal logicS4 with common knowledge. Finally, we give a brief
analysis of the coordinated attack problem in the newly developed language of our logic.
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1. Introduction

Justification logicsare epistemic logics that explicitly include justifications for
the agents’ knowledge (Artemov, 2008). The first logic of this kind, theLogic of
ProofsLP, was developed by Artemov to provide the modal logicS4 with provability
semantics (Artemov, 1995; Artemov, 2001). The language of justification logics has
also been used to create a new approach to the logical omniscience problem (Artemov
et al., 2009) and to study self-referential proofs (Kuznets, 2010).

Instead of statementsA is known, denoted�A, justification logics reason about
justifications for knowledge by using the construct[t]A to formalize statementst is
a justification forA, where, dependent on the application, theevidence termt can be
viewed as an informal justification or a formal mathematicalproof. Evidence terms
are built by means of operations that correspond to the axioms of S4, as is illustrated
in Fig. 1.
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S4 axioms LP axioms
�(A → B) → (�A → �B) [t](A → B) → ([s]A → [t · s]B) (application)
�A → A [t]A → A (reflexivity)
�A → ��A [t]A → [!t][t]A (inspection)

[t]A ∨ [s]A → [t + s]A (sum)

Figure 1. Axioms ofS4 andLP

Artemov has shown that the Logic of ProofsLP is anexplicit1 counterpartof the
modal logicS4 in the following formal sense: each theorem ofLP becomes a theorem
of S4 if all the terms are replaced with the modality�; and, vice versa, each theorem
of S4 can be transformed into a theorem ofLP if the occurrences of modality are re-
placed with suitable evidence terms (Artemov, 2001). The latter process is calledreal-
ization, and the statement of correspondence is called arealization theorem. Note that
the operation+ introduced by the sum axiom in Fig. 1 does not have a modal analog,
but it is an essential part of the proof of the realization theorem in (Artemov, 2001).
Explicit counterparts for many normal modal logics betweenK andS5 have been de-
veloped (see a recent survey in (Artemov, 2008) and a uniformproof of realization
theorems for all single-agent justification logics in (Brünnleret al., 2010)).

The notion ofcommon knowledgeis essential in the area of multi-agent systems,
where coordination among agents is a central issue. For a thorough introduction to
epistemic logics in general and to common knowledge in particular, one can refer to
the standard textbooks (Faginet al., 1995; Meyeret al., 1995). Informally, common
knowledge ofA is defined as the infinitary conjunctioneverybody knowsA and ev-
erybody knows that everybody knowsA and so on. This is equivalent to saying that
common knowledge ofA is the greatest fixed point of

λX.(everybody knowsA and everybody knowsX) . (1)

An explicit counterpart of McCarthy’sany fool knowscommon knowledge modal-
ity (McCarthy et al., 1978), where common knowledge ofA is defined as an arbi-
trary fixed point of (1), is presented in (Artemov, 2006). Therelationship between
the traditional common knowledge from (Faginet al., 1995; Meyeret al., 1995) and
McCarthy’s version is studied in (Antonakos, 2007).

In this paper, we develop a multi-agent justification logic with evidence terms for
individual agents as well as for common knowledge, with the intention to provide an
explicit counterpart of theh-agent modal logic of traditional common knowledgeS4

C

h.
For the sake of compactness and readability, we will not treat groups of agents.

1. For other meanings of “explicit” see Sect. 8.
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Multi-agent justification logics with evidence terms for each agent are considered
in (Yavorskaya (Sidon), 2008; Renne, 2009a; Artemov, 2010), but common knowl-
edge is not present in any of them. Renne’s system combines features of modal and
dynamic epistemic logics (Renne, 2009a) and hence cannot bedirectly compared to
our system. Artemov’s interest lies mostly in exploring a case of two agents with un-
equal epistemic powers:e.g., Artemov’s Observer has sufficient evidence to reproduce
the Object Agent’s thinking, but not vice versa (Artemov, 2010). Yavorskaya studies
various operations of evidence transfer between agents (Yavorskaya (Sidon), 2008).
Yavorskaya’s minimal2 two-agent justification logicLP

2, which is an explicit counter-
part ofS42, is the closest to our system. We will show that in the case of two agents
our system is a conservative extension ofLP

2.

An epistemic semantics forLP, F-models, was created by Fitting by augmenting
Kripke models with anevidence functionthat specifies which formulae are evidenced
by a term at a given world (Fitting, 2005). Independently, Mkrtychev proved a stronger
completeness result forLP with respect to singleton F-models (Mkrtychev, 1997),
now known asM-models, where the role of the accessibility relation is completely
taken over by the evidence function. The semantics of F-models has been adapted
to the whole family of single-agent justification logics (for details, see (Artemov,
2008)). Artemov extends F-models to the language with both evidence terms for
McCarthy’s common knowledge modality and ordinary modalities for the individual
agents (Artemov, 2006), creating the most general type of epistemic models, some-
times calledAF-models, where common evidence terms are given their own accessibil-
ity relation, which does not directly depend on the accessibility relations for individual
modalities. The absence of ordinary modalities in Yavorskaya’s two-agent justifica-
tion systems provides for a stronger completeness result with respect to M-models
(Yavorskaya (Sidon), 2008).

The paper is organized as follows. In Sect. 2, we introduce a language and give an
axiomatization of a family of multi-agent justification logics with common knowledge.
In Sect. 3, we prove their basic properties including the internalization property, which
is characteristic of all justification logics. In Sect. 4, wedevelop an epistemic seman-
tics and prove soundness and completeness with respect to this semantics as well as
with respect to singleton models, thereby demonstrating the finite model property. In
Sect. 5, we show that for the two-agent case, our logic is a conservative extension of
Yavorskaya’s minimal two-agent justification logic. In Sect. 6, we demonstrate how
our logic is related to the modal logic of traditional commonknowledge and discuss
the problem of realization. In Sect. 7, we provide an analysis of the coordinated at-
tack problem in our logic. Finally, in Sect. 8, we discuss howthe newly introduced
terms affect the agents, including their ability to communicate information in various
communication modes.

2. Minimality here is understood in the sense of the minimal transfer of evidence.
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2. Syntax

To create an explicit counterpart of the modal logic of common knowledgeS4
C

h,
we use its axiomatizationvia the induction axiom from (Meyeret al., 1995) rather than
via the induction rule to facilitate proving the internalization property for the resulting
justification logic. We supply each agent with its own copy ofterms from the Logic of
Proofs, while terms for common and mutual knowledge employ additional operations.
The fact that each agent has its own set of operations makes our framework more
flexible. For instance, agents may be thought of as representing different arithmetical
proof systems that use different encodings (cf. (Yavorskaya (Sidon), 2008)).

As motivated in (Bucheliet al., 2010b), a proof ofCA can be viewed as an infinite
list of proofs of the conjunctsEmA from the representation of common knowledge
through an infinite conjunction. To generate a finite representation of this infinite list,
we use an explicit counterpart of the induction axiom

A ∧ [t]C(A → [s]EA) → [ind(t, s)]CA

with a binary operationind(·, ·). To facilitate access to the elements of the list, ex-
plicit counterparts of the co-closure axiom provide evidence terms that can be seen as
splitting the infinite list into its head and tail,

[t]CA → [ccl1(t)]EA , [t]CA → [ccl2(t)]E [t]CA ,

by means of two unary co-closure operationsccl1(·) andccl2(·).

Evidence terms for mutual knowledge are viewed as tuples of the individual agents’
evidence terms. The standard tupling operation andh unary projections are employed
as means of translation between the individual agents’ and mutual knowledge evi-
dence. Note that, strictly speaking, evidence terms for mutual knowledge are not
necessary because they could be defined, just like the modality for mutual knowledge
can be defined in the modal case. However, the resulting system would be very cum-
bersome in notation and usage.

While only two of the three operations onLP terms (see Fig. 1) are adopted for
common knowledge evidence and none is adopted for mutual knowledge evidence, it
will be shown in Sect. 3 that three out of the four remaining operations are definable,
with a notable exception of inspection for mutual knowledge, as is to be expected.
While the usage of the application operation for common knowledge evidence terms is
justifiable on the grounds of the corresponding modal(K) axiom for common knowl-
edge, the necessity of the sum operation for common knowledge evidence terms is
less clear and can only be shown once the realization theoremis proved (see Sect. 6
for details).

We consider a system ofh agents. Throughout the paper,i always denotes an
element of{1, . . . , h}, ∗ always denotes an element of{1, . . . , h, C}, and⊛ always
denotes an element of{1, . . . , h, E, C}.
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Let Cons⊛ := {c⊛

1 , c⊛

2 , . . . } and Var⊛ := {x⊛

1 , x⊛

2 , . . . } be countable sets of
proof constantsandproof variablesrespectively for each⊛. The sets Tm1, . . . , Tmh,
TmE, and TmC of evidence terms for individual agentsand formutualandcommon
knowledgerespectively are inductively defined as follows:

1. Cons⊛ ⊆ Tm⊛ and Var⊛ ⊆ Tm⊛;

2. !it ∈ Tmi for anyt ∈ Tmi;

3. t +∗ s ∈ Tm∗ andt ·∗ s ∈ Tm∗ for anyt, s ∈ Tm∗;

4. 〈t1, . . . , th〉 ∈ TmE for anyt1 ∈ Tm1, . . . , th ∈ Tmh;

5. πit ∈ Tmi for anyt ∈ TmE;

6. ccl1(t) ∈ TmE andccl2(t) ∈ TmE for anyt ∈ TmC;

7. ind(t, s) ∈ TmC for anyt ∈ TmC and anys ∈ TmE.

Tm := Tm1 ∪ · · · ∪ Tmh ∪ TmE ∪ TmC denotes the set of all evidence terms. The
indices of the operations!, +, and· will most often be omitted if they can be inferred
from the context. A term is calledgroundif no proof variables occur in it.

Let Prop:= {P1, P2, . . . } be a countable set ofpropositional variables. Formulae
are denoted byA, B, C, . . . and are defined by the grammar

A ::= Pj | ¬A | (A ∧ A) | (A ∨ A) | (A → A) | [t]⊛A ,

wheret ∈ Tm⊛ andPj ∈ Prop. The set of all formulae is denoted by FmLPC

h

. We
adopt the following convention: whenever a formula[t]⊛A is used, it is assumed to be
well-formed:i.e., it is implicitly assumed that termt ∈ Tm⊛. This enables us to omit
the explicit typification of terms.

Axioms of LP
C

h:

1. all propositional tautologies

2. [t]∗(A → B) → ([s]∗A → [t · s]∗B) (application)

3. [t]∗A ∨ [s]∗A → [t + s]∗A (sum)

4. [t]iA → A (reflexivity)

5. [t]iA → [!t]i [t]iA (inspection)

6. [t1]1A ∧ · · · ∧ [th]hA → [〈t1, . . . , th〉]EA (tupling)

7. [t]EA → [πit]iA (projection)

8. [t]CA → [ccl1(t)]EA, [t]CA → [ccl2(t)]E [t]CA (co-closure)

9. A ∧ [t]C(A → [s]EA) → [ind(t, s)]CA (induction)
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A constant specificationCS is any subset

CS ⊆
⋃

⊛∈{1,...,h,E,C}

{

[c]⊛A : c ∈ Cons⊛ andA is an axiom ofLP
C

h

}

.

A constant specificationCS is calledC-axiomatically appropriateif, for each ax-
iom A, there is a proof constantc ∈ ConsC such that[c]CA ∈ CS. A constant specifi-
cationCS is calledhomogeneous, if CS ⊆ {[c]⊛A : c ∈ Cons⊛ andA is an axiom}
for some fixed⊛: i.e., if for all [c]⊛A ∈ CS the constantsc are of the same type.

For a constant specificationCS, the deductive systemLP
C

h(CS) is the Hilbert sys-
tem given by the axioms ofLP

C

h above and by the rules modus ponens and axiom
necessitation:

A A → B

B
,

[c]⊛A
, where[c]⊛A ∈ CS.

By LP
C

h we denote the systemLP
C

h(CS) with

CS =
{

[c]CA : c ∈ ConsC andA is an axiom ofLP
C

h

}

. (2)

For an arbitraryCS, we write∆ ⊢CS A to state thatA is derivable from a set of

formulae∆ in LP
C

h(CS) and omitCS when working with the constant specification
from (2) by writing∆ ⊢ A. We also omit∆ when∆ = ∅ and write⊢CS A or ⊢ A,
in which caseA is called a theorem ofLP

C

h(CS) or of LP
C

h respectively. We use∆, A
to mean∆ ∪ {A}.

3. Basic properties

In this section, we show that our logic possesses the standard properties expected of
any justification logic. In addition, we show that the operations on terms introduced in
the previous section are sufficient to express the operations of sum and application for
mutual knowledge evidence and the operation of inspection for common knowledge
evidence. This is the reason why+E, ·E, and!C are not primitive connectives in the
language. It should be noted that no inspection operation for mutual evidence terms
can be defined, which follows from Lemma 28 in Sect. 6 and the fact thatEA → EEA
is not a valid modal formula.

LEMMA 1. — For any constant specificationCS and any formulaeA andB:

1. ⊢CS [t]EA → A for all t ∈ TmE; (E-reflexivity)

2. for anyt, s ∈ TmE, there is a termt ·E s ∈ TmE such that
⊢CS [t]E(A → B) → ([s]EA → [t ·E s]EB); (E-application)

3. for anyt, s ∈ TmE, there is a termt +E s ∈ TmE such that
⊢CS [t]EA ∨ [s]EA → [t +E s]EA; (E-sum)
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4. for anyt ∈ TmC and anyi ∈ {1, . . . , h}, there is a term↓ it ∈ Tmi such that
⊢CS [t]CA → [↓ it]iA; (i-conversion)

5. ⊢CS [t]CA → A for all t ∈ TmC. (C-reflexivity)

PROOF. —

1. Immediate by the projection and reflexivity axioms.

2. Sett ·E s := 〈π1t ·1 π1s, . . . , πht ·h πhs〉.

3. Sett +E s := 〈π1t +1 π1s, . . . , πht +h πhs〉.

4. Set↓ it := πiccl1(t).

5. Immediate by 4. and the reflexivity axiom. �

Unlike Lemma 1, Lemma 2 requires that a constant specification CS be C-axio-
matically appropriate.

LEMMA 2. — LetCS beC-axiomatically appropriate andA be a formula.

1. For anyt ∈ TmC, there is a term!Ct ∈ TmC such that
⊢CS [t]CA → [!Ct]C [t]CA. (C-inspection)

2. For anyt ∈ TmC, there is a term⇚ t ∈ TmC such that
⊢CS [t]CA → [⇚ t]C [ccl1(t)]EA. (C-shift)

PROOF. —

1. Set!Ct := ind(c, ccl2(t)), where[c]C([t]CA → [ccl2(t)]E [t]CA) ∈ CS.

2. Set⇚ t := c′ ·C (!Ct), where[c′]C([t]CA → [ccl1(t)]EA) ∈ CS.

The existence of constantsc andc′ is guaranteed by theC-appropriateness ofCS. �

The following two lemmas are standard in justification logics. Their proofs can be
taken almost word for word from (Artemov, 2001) and are, therefore, omitted here.

LEMMA 3 (DEDUCTION THEOREM). — Let CS be a constant specification and
∆ ∪ {A, B} ⊆ FmLPC

h

. Then∆, A ⊢CS B if and only if∆ ⊢CS A → B.

LEMMA 4 (SUBSTITUTION). — For any constant specificationCS, any proposi-
tional variableP , any∆ ∪ {A, B} ⊆ FmLPC

h

, anyx ∈ Var⊛, and anyt ∈ Tm⊛,

if ∆ ⊢CS A, then∆(x/t, P/B) ⊢CS(x/t,P/B) A(x/t, P/B) ,

whereA(x/t, P/B) denotes the formula obtained by simultaneously replacing all oc-
currences ofx in A with t and all occurrences ofP in A with B and∆(x/t, P/B)
andCS(x/t, P/B) are defined accordingly.
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The following lemma states that our logic can internalize its own proofs, which is
an important property of justification logics.

LEMMA 5 (C-LIFTING). — LetCS be a homogeneousC-axiomatically appropriate
constant specification. For any formulaeA, B1, . . . , Bn, C1, . . . , Cm and any terms
s1, . . . , sn ∈ TmC, if

[s1]CB1, . . . , [sn]CBn, C1, . . . , Cm ⊢CS A ,

then for each⊛ there is a termt⊛(xC
1 , . . . , xC

n, y⊛

1 , . . . , y⊛
m) ∈ Tm⊛ such that

[s1]CB1, . . . , [sn]CBn, [y1]⊛C1, . . . , [ym]⊛Cm ⊢CS [t⊛(s1, . . . , sn, y1, . . . , ym)]⊛A

for fresh variablesx1, . . . , xn ∈ VarC andy1, . . . , ym ∈ Var⊛.

PROOF. — We proceed by induction on the derivation ofA.

If A is an axiom, there is a constantc ∈ ConsC such that[c]CA ∈ CS because
CS is C-axiomatically appropriate. Then take

tC := c, ti :=↓ ic, tE := ccl1(c)

and use axiom necessitation, axiom necessitation andi-conversion, or axiom necessi-
tation and the co-closure axiom respectively.

ForA = [sj ]CBj, 1 ≤ j ≤ n, take

tC :=!Cxj , ti :=↓ i!Cxj , tE := ccl2(xj)

for a fresh variablexj ∈ VarC and, afterxj is replaced withsj , useC-inspection,
C-inspection andi-conversion, or the co-closure axiom respectively.

ForA = Cj , 1 ≤ j ≤ m, taket⊛ := yj for a fresh variableyj ∈ Var⊛.

For A derived by modus ponens fromD → A andD, by induction hypothesis
there are termsr⊛, s⊛ ∈ Tm⊛ such that[r⊛]⊛(D → A) and[s⊛]⊛D are derivable.
Taket⊛ := r⊛ ·⊛ s⊛ and use⊛-application, which is an axiom for⊛ = i and for
⊛ = C or follows from Lemma 1 for⊛ = E.

ForA = [c]CE ∈ CS derived by axiom necessitation, take

tC :=!Cc, ti :=↓ i!Cc, tE := ccl2(c)

and useC-inspection,C-inspection andi-conversion, or the co-closure axiom re-
spectively. No other instances of the axiom necessitation rule are possible. Indeed,
CS must contain formulae of the type[c]CE because ofC-axiomatic appropriate-
ness. The homogeneity ofCS then means that formulae neither of type[c]iE nor
of type[c]EE can occur inCS. �

COROLLARY 6 (CONSTRUCTIVE NECESSITATION). — Let CS be a homogeneous
C-axiomatically appropriate constant specification. For any formulaA, if ⊢CS A,
then for each⊛ there is a ground termt ∈ Tm⊛ such that⊢CS [t]⊛A.
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The following two lemmas show that our systemLP
C

h can internalize versions of
the induction rule used in various axiomatizations ofS4

C

h (see (Bucheliet al., 2010b)
for a discussion of several axiomatizations of this kind).

LEMMA 7 (INTERNALIZED INDUCTION RULE 1). — Let CS be a homogeneous
C-axiomatically appropriate constant specification. For any terms ∈ TmE and any
formulaA, if ⊢CS A → [s]EA, there ist ∈ TmC such that⊢CS A → [ind(t, s)]CA.

PROOF. — By constructive necessitation,⊢CS [t]C(A → [s]EA) for somet ∈ TmC.
It remains to use the induction axiom and propositional reasoning. �

LEMMA 8 (INTERNALIZED INDUCTION RULE 2). — Let CS be a homogeneous
C-axiomatically appropriate constant specification. For any formulaeA andB and
any terms ∈ TmE, if we have⊢CS B → [s]E(A ∧ B), then there existst ∈ TmC and
c ∈ ConsC such that⊢CS B → [c · ind(t, s)]CA, where[c]C(A ∧ B → A) ∈ CS.

PROOF. — Assume
⊢CS B → [s]E(A ∧ B) . (3)

From this we immediately get⊢CS A ∧ B → [s]E(A ∧ B). Thus, by Lemma 7, there
is at ∈ TmC with

⊢CS A ∧ B → [ind(t, s)]C(A ∧ B) . (4)

SinceCS is C-axiomatically appropriate, there is a constantc ∈ ConsC such that

⊢CS [c]C(A ∧ B → A) . (5)

Making use ofC-application, we find by (4) and (5) that

⊢CS A ∧ B → [c · ind(t, s)]CA . (6)

From (3) we get byE-reflexivity that⊢CS B → A∧B. This, together with (6), finally
yields⊢CS B → [c · ind(t, s)]CA. �

4. Soundness and completeness

DEFINITION 9. — An (epistemic) model meeting a constant specificationCS is a
structureM = (W, R, E , ν), where(W, R, ν) is a Kripke model forS4h with a set of
possible worldsW 6= ∅, with a functionR : {1, . . . , h} → P(W ×W ) that assigns a
reflexive and transitiveaccessibility relationonW to each agenti ∈ {1, . . . , h}, and
with a truth valuationν : Prop → P(W ). We always writeRi instead ofR(i) and
define the accessibility relations for mutual and common knowledge in the standard
way: RE := R1 ∪ · · · ∪ Rh andRC :=

⋃∞
n=1(RE)n.

An evidence functionE : W × Tm → P
(

FmLPC

h

)

determines the formulae evi-

denced by a term at a world. We defineE⊛ := E ↾ (W × Tm⊛). Note that whenever
A ∈ E⊛(w, t), it follows thatt ∈ Tm⊛. The evidence functionE must satisfy the
following closure conditions: for any worldsw, v ∈ W ,
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1. E∗(w, t) ⊆ E∗(v, t) whenever(w, v) ∈ R∗; (monotonicity)

2. if [c]⊛A ∈ CS, thenA ∈ E⊛(w, c); (constant specification)

3. if (A → B) ∈ E∗(w, t) andA ∈ E∗(w, s), thenB ∈ E∗(w, t · s); (application)

4. E∗(w, s) ∪ E∗(w, t) ⊆ E∗(w, s + t); (sum)

5. if A ∈ Ei(w, t), then[t]iA ∈ Ei(w, !t); (inspection)

6. if A ∈ Ei(w, ti) for all 1 ≤ i ≤ h, thenA ∈ EE(w, 〈t1, . . . , th〉); (tupling)

7. if A ∈ EE(w, t), thenA ∈ Ei(w, πit); (projection)

8. if A ∈ EC(w, t), thenA ∈ EE(w, ccl1(t)) and [t]CA ∈ EE(w, ccl2(t)); (co-closure)

9. if A ∈ EE(w, s) and(A → [s]EA) ∈ EC(w, t),
thenA ∈ EC(w, ind(t, s)). (induction)

When the model is clear from the context, we will directly refer to R1, . . . , Rh,
RE, RC, E1, . . . , Eh, EE, EC, W , andν.

DEFINITION 10. —A ternary relationM, w  A for formulaA being satisfied at a
world w ∈ W in a modelM = (W, R, E , ν) is defined by induction on the structure
of the formulaA:

1. M, w  Pn if and only ifw ∈ ν(Pn);

2.  behaves classically with respect to the propositional connectives;

3. M, w  [t]⊛A if and only if

1) A ∈ E⊛(w, t) and

2) M, v  A for all v ∈ W with (w, v) ∈ R⊛.

We writeM  A if M, w  A for all w ∈ W . We writeM, w  ∆ for ∆ ⊆ FmLPC

h

if M, w  A for all A ∈ ∆. We writeCS A and say that formulaA is valid with
respect toCS if M  A for all epistemic modelsM meetingCS.

LEMMA 11 (SOUNDNESS). — All theorems are valid:⊢CS A impliesCS A.

PROOF. — Let M = (W, R, E , ν) be a model meetingCS and letw ∈ W . We
show soundness by induction on the derivation ofA. The cases for propositional
tautologies, for the application, sum, reflexivity, and inspection axioms, and for the
modus ponens rule are the same as for the single-agent case in(Fitting, 2005) and are,
therefore, omitted. We show the remaining five cases:

(tupling) AssumeM, w  [ti]iA for all 1 ≤ i ≤ h. Then for all1 ≤ i ≤ h,
we have 1)M, v  A whenever(w, v) ∈ Ri and 2)A ∈ Ei(w, ti). By the
tupling closure condition, it follows from 2) thatA ∈ EE(w, 〈t1, . . . , th〉). Since
RE =

⋃h
i=1 Ri by definition, it follows from 1) thatM, v  A whenever

(w, v) ∈ RE. Hence,M, w  [〈t1, . . . , th〉]EA.
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(projection) AssumeM, w  [t]EA. Then 1)M, v  A whenever(w, v) ∈ RE

and 2)A ∈ EE(w, t). By the projection closure condition, it follows from 2)
thatA ∈ Ei(w, πit). In addition, sinceRE =

⋃h
i=1 Ri, it follows from 1) that

M, v  A whenever(w, v) ∈ Ri. Thus,M, w  [πit]iA.

(co-closure) AssumeM, w  [t]CA. Then 1)M, v  A whenever(w, v) ∈ RC and
2) A ∈ EC(w, t). It follows from 1) thatM, v′  A whenever(w, v′) ∈ RE

sinceRE ⊆ RC; also, due to the monotonicity closure condition,M, v′  [t]CA
sinceRE◦RC ⊆ RC. By the co-closure closure condition, it follows from 2) that
A ∈ EE(w, ccl1(t)) and[t]CA ∈ EE(w, ccl2(t)). Hence,M, w  [ccl1(t)]EA
andM, w  [ccl2(t)]E [t]CA.

(induction) AssumeM, w  A andM, w  [t]C(A → [s]EA). From the sec-
ond assumption and the reflexivity ofRC, we getM, w  A → [s]EA; thus,
M, w  [s]EA by the first assumption. SoA ∈ EE(w, s) and, by the second
assumption,A → [s]EA ∈ EC(w, t). By the induction closure condition, we
haveA ∈ EC(w, ind(t, s)). To show thatM, v  A whenever(w, v) ∈ RC, we
prove thatM, v  A whenever(w, v) ∈ (RE)n by induction on the positive
integern.

Thebase casen = 1 immediately follows fromM, w  [s]EA.

Induction step. If (w, v) ∈ (RE)n+1, there must existv′ ∈ W such that
(w, v′) ∈ (RE)n and(v′, v) ∈ RE. By induction hypothesis,M, v′  A. Since
M, w  [t]C(A → [s]EA), we getM, v′  A → [s]EA. Thus,M, v′  [s]EA,
which yieldsM, v  A.

Finally, we conclude thatM, w  [ind(t, s)]CA.

(axiom necessitation)Let [c]⊛A ∈ CS. SinceA must be an axiom,M, w  A for
all w ∈ W , as shown above. SinceM is a model meetingCS, we also have
A ∈ E⊛(w, c) for all w ∈ W by the constant specification closure condition.
Thus,M, w  [c]⊛A for all w ∈ W . �

DEFINITION 12. —Let CS be a constant specification. A setΦ of formulae is
called CS-consistentif Φ 0CS φ for some formulaφ. A setΦ is called maximal
CS-consistentif it is CS-consistent and has noCS-consistent proper extensions.

Whenever safe, we do not mention the constant specification and only talk about
consistent and maximal consistent sets. It can be easily shown that maximal consistent
sets contain all axioms ofLP

C

h and are closed under modus ponens.

DEFINITION 13. —For a setΦ of formulae, we define

Φ/⊛ := {A : there is at ∈ Tm⊛ such that[t]⊛A ∈ Φ} .

DEFINITION 14. —Let CS be a constant specification. Thecanonical (epistemic)
modelM = (W, R, E , ν) meetingCS is defined as follows:
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1. W := {w ⊆ FmLPC

h

: w is a maximalCS-consistent set};

2. Ri := {(w, v) ∈ W × W : w/i ⊆ v};

3. E⊛(w, t) := {A ∈ FmLPC

h

: [t]⊛A ∈ w};

4. ν(Pn) := {w ∈ W : Pn ∈ w}.

LEMMA 15. — Let CS be a constant specification. The canonical epistemic model
meetingCS is an epistemic model meetingCS.

PROOF. — The proof of the reflexivity and transitivity of eachRi, as well as the
argument for the constant specification, application, sum,and inspection closure con-
ditions, is the same as in the single-agent case (see (Fitting, 2005)). We show the
remaining five closure conditions:

(tupling) AssumeA ∈ Ei(w, ti) for all 1 ≤ i ≤ h. By definition ofEi, we have
[ti]iA ∈ w for all 1 ≤ i ≤ h. Therefore, by the tupling axiom and maximal
consistency,[〈t1, . . . , th〉]EA ∈ w. Thus,A ∈ EE(w, 〈t1, . . . , th〉).

(projection) AssumeA ∈ EE(w, t). By definition ofEE, we have[t]EA ∈ w. There-
fore, by the projection axiom and maximal consistency,[πit]iA ∈ w. Thus,
A ∈ Ei(w, πit).

(co-closure) AssumeA ∈ EC(w, t). By definition ofEC, we have[t]CA ∈ w. There-
fore, by the co-closure axioms and maximal consistency,[ccl1(t)]EA ∈ w and
[ccl2(t)]E [t]CA ∈ w. Thus,A ∈ EE(w, ccl1(t)) and[t]CA ∈ EE(w, ccl2(t)).

(induction) AssumeA ∈ EE(w, s) and(A → [s]EA) ∈ EC(w, t). By definition ofEE

andEC, we have[s]EA ∈ w and[t]C(A → [s]EA) ∈ w. From⊢CS [s]EA → A
(Lemma 1.1) and the induction axiom, it follows by maximal consistency that
A ∈ w and[ind(t, s)]CA ∈ w. Therefore,A ∈ EC(w, ind(t, s)).

(monotonicity) We show only the case of∗ = C since the other cases are the same as
in (Fitting, 2005). It is sufficient to prove by induction on the positive integern
that

if [t]CA ∈ w and(w, v) ∈ (RE)n, then [t]CA ∈ v . (7)

Base casen = 1. Assume(w, v) ∈ RE: i.e., w/i ⊆ v for somei. As [t]CA ∈ w,
[πiccl2(t)]i [t]CA ∈ w by maximal consistency, and hence[t]CA ∈ w/i ⊆ v.
The argument for theinduction step is similar.

Now assume(w, v) ∈ RC =
⋃∞

n=1(RE)n andA ∈ EC(w, t). By definition
of EC, we have[t]CA ∈ w. As shown above,[t]CA ∈ v. Thus,A ∈ EC(v, t). �

REMARK 16. — LetR′
C

denote the binary relation onW defined by

(w, v) ∈ R′
C if and only if w/C ⊆ v .

An argument similar to the one just used for monotonicity shows thatRC ⊆ R′
C
.

However, forh > 1 the converse does not hold for any homogeneousC-axiomatically



Justifications for Common Knowledge 13

appropriate constant specificationCS, which we demonstrate by adapting an example
from (Meyeret al., 1995). For a fixed propositional variableP , let

Φ := {[sn]E . . . [s1]EP : n ≥ 1, s1, . . . , sn ∈ TmE} ∪ {¬ [t]CP : t ∈ TmC} .

This set isCS-consistent for anyP ∈ Prop.

To prove this, letΦ′ ⊆ Φ be finite and letm denote the largest nonnegative integer
such that[sm]E . . . [s1]EP ∈ Φ′ for somes1, . . . , sm ∈ TmE (in particular,m = 0 if
no such terms exist). Define the modelN :=

(

N, RN , EN , νN
)

by

• RN
i := {(n, n + 1) ∈ N2 : n mod h = i} ∪ {(n, n) : n ∈ N};

• EN (n, s) := FmLPC

h

for all n ∈ N and all termss ∈ Tm;

• νN (Pj) := {1, 2, . . . , m + 1} for all Pj ∈ Prop.

Clearly,N meets any constant specification; in particular, it meets the givenCS. For
h > 1, it can also be easily verified thatN , 1  Φ′; therefore,Φ′ is CS-consistent.

SinceΦ is CS-consistent, there exists a maximalCS-consistent setw ⊇ Φ. Let us
show that the setΨ := {¬P}∪ (w/C) is alsoCS-consistent. Indeed, if it were not the
case, there would exist formulae[t1]CB1, . . . , [tn]CBn ∈ w such that

⊢CS B1 → (B2 → · · · → (Bn → P ) . . . ) .

Then, by Corollary 6, there would exist a terms ∈ TmC such that

⊢CS [s]C(B1 → (B2 → · · · → (Bn → P ) . . . )) .

But this would imply[(. . . (s · t1) · · · tn−1) · tn]CP ∈ w—a contradiction with the
consistency ofw.

SinceΨ is alsoCS-consistent, there exists a maximalCS-consistent setv ⊇ Ψ.
Clearly, w/C ⊆ v: i.e., (w, v) ∈ R′

C
. But (w, v) /∈ RC because this would imply

P ∈ v, which would contradict the consistency ofv. It follows thatRC ( R′
C
.

Similarly, we can defineR′
E

by (w, v) ∈ R′
E

if and only if w/E ⊆ v. However,
R′

E
= RE for anyC-axiomatically appropriate constant specificationCS. Indeed, it

is easy to show thatRE ⊆ R′
E
. For the converse direction, assume(w, v) /∈ RE,

then(w, v) /∈ Ri for any1 ≤ i ≤ h. So there are formulaeA1, . . . , Ah such that
[ti]iAi ∈ w for someti ∈ Tmi, butAi /∈ v. Now let [ci]C(Ai → A1∨· · ·∨Ah) ∈ CS
for constantsc1, . . . , ch. Then[↓ ici · ti]i(A1 ∨ · · · ∨ Ah) ∈ w for all 1 ≤ i ≤ h, so
[〈↓1c1 · t1, . . . , ↓hch · th〉]E(A1∨· · ·∨Ah) ∈ w. However,Ai /∈ v for any1 ≤ i ≤ h;
therefore, by the maximal consistency ofv, A1∨· · ·∨Ah /∈ v either. Hence,w/E * v,
so(w, v) /∈ R′

E
. �

LEMMA 17 (TRUTH LEMMA ). — LetCS be a constant specification andM be the
canonical epistemic model meetingCS. For all formulaeA and all worldsw ∈ W ,

A ∈ w if and only ifM, w  A .
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PROOF. — The proof is by induction on the structure ofA. The cases for proposi-
tional variables and propositional connectives are immediate by definition of and by
the maximal consistency ofw. We check the remaining cases:

CaseA is [t]iB. AssumeA ∈ w. ThenB ∈ w/i andB ∈ Ei(w, t). Consider anyv
such that(w, v) ∈ Ri. Sincew/i ⊆ v, it follows thatB ∈ v, and thus, by induction
hypothesis,M, v  B. It immediately follows thatM, w  A.

For the converse, assumeM, w  [t]iB. By definition of, we getB ∈ Ei(w, t),
from which[t]iB ∈ w immediately follows by definition ofEi.

CaseA is [t]EB. AssumeA ∈ w and consider anyv such that(w, v) ∈ RE. Then
(w, v) ∈ Ri for some1 ≤ i ≤ h: i.e., w/i ⊆ v. By definition of EE, we have
B ∈ EE(w, t). By the maximal consistency ofw, it follows that [πit]iB ∈ w, and
thusB ∈ w/i ⊆ v. Since by induction hypothesis,M, v  B, we can conclude that
M, w  A. The argument for the converse repeats the one from the previous case.

CaseA is [t]CB. AssumeA ∈ w and consider anyv such that(w, v) ∈ RC:
i.e., (w, v) ∈ (RE)n for somen ≥ 1. As in the previous cases,B ∈ EC(w, t) by
definition ofEC. It follows from (7) in the proof of Lemma 15 thatA ∈ v, and thus, by
C-reflexivity and maximal consistency, alsoB ∈ v. Hence, by induction hypothesis,
M, v  B. Now M, w  A immediately follows. The argument for the converse
repeats the one from the previous cases. �

Note that, unlike the converse directions in the proof above, the corresponding
proofs in the modal case are far from trivial and require additional work (seee.g.
(Meyeret al., 1995)). The last case, in particular, usually requires more sophisticated
methods that would guarantee the finiteness of the model. This simplification of proofs
in justification logics is yet another benefit of using terms instead of modalities.

THEOREM 18 (COMPLETENESS). — LP
C

h(CS) is sound and complete with respect
to the class of epistemic models meetingCS: i.e., for all formulaeA ∈ FmLPC

h

,

⊢CS A if and only if CS A .

PROOF. — Soundness was already shown in Lemma 11. For completeness, letM be
the canonical model meetingCS and assume0CS A. Then{¬A} is CS-consistent and
hence is contained in some maximalCS-consistent setw ∈ W . So, by Lemma 17,
M, w  ¬A, and hence, by Lemma 15,1CS A. �

In the case ofLP, the finite model property can be demonstrated by restricting the
class of epistemic models to the so-called M-models, introduced by Mkrtychev in
(Mkrtychev, 1997). We will now adapt M-models to our logic and prove the finite
model property for it.

DEFINITION 19. —AnM-modelis a singleton epistemic model.
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THEOREM 20 (COMPLETENESS WITH RESPECT TOM-MODELS). — LP
C

h(CS) is
also sound and complete with respect to the class of M-modelsmeetingCS.

PROOF. — Soundness follows immediately from Lemma 11. Now assume0CS A,
then{¬A} is CS-consistent, and henceM, w0  ¬A for some worldw0 ∈ W in the
canonical epistemic modelM = (W, R, E , ν) meetingCS.

Let M′ = (W ′, R′, E ′, ν′) be the restriction ofM to {w0}: i.e., W ′ := {w0},
R′

i := {(w0, w0)} for all i, E ′ := E ↾ (W ′ × Tm), andν′(Pn) := ν(Pn) ∩ W ′.

SinceM′ is clearly an M-model meetingCS, it only remains to demonstrate that
M′, w0  B if and only if M, w0  B for all formulaeB. We proceed by induction
on the structure ofB. The cases where eitherB is a propositional variable or its
primary connective is propositional are trivial. Therefore, we only show the case of
B = [t]⊛C. First, observe that

M, w0  [t]⊛C if and only if C ∈ E ′
⊛(w0, t) . (8)

Indeed, by Lemma 17,M, w0  [t]⊛C if and only if [t]⊛C ∈ w0, which, by definition
of the canonical epistemic model, is equivalent toC ∈ E⊛(w0, t) = E ′

⊛(w0, t).

If M, w0  [t]⊛C, thenM, w0  C sinceR⊛ is reflexive. By induction hypoth-
esis,M′, w0  C. By (8) we haveC ∈ E ′

⊛(w0, t), and thusM′, w0  [t]⊛C.

If M, w0 1 [t]⊛C, then by (8) we haveC /∈ E ′
⊛(w0, t), soM′, w0 1 [t]⊛C. �

COROLLARY 21 (FINITE MODEL PROPERTY). — LP
C

h(CS) enjoys the finite model
property with respect to epistemic models.

REMARK 22. — Note that, in the case ofLP
C

h(CS), the finite model property does
not imply that common knowledge can be deduced from sufficiently many approxi-
mants, unlike in the modal case. This is an immediate consequence of the set

Φ := {[sn]E . . . [s1]EP : n ≥ 1, s1, . . . , sn ∈ TmE} ∪ {¬ [t]CP : t ∈ TmC}

being consistent, as shown in Remark 16. In modal logic, a setanalogous toΦ can
only be satisfied in infinite models, whereas in our case, due to the evidence function
completely taking over the role of the accessibility relations, there is a singleton M-
model that satisfiesΦ. �

5. Conservativity

We extend the two-agent versionLP
2 of the Logic of Proofs (Yavorskaya (Sidon),

2008) to an arbitraryh in the natural way and rename it in accordance with our naming
scheme:

DEFINITION 23. —The language ofLPh is obtained from that ofLP
C

h by restricting
the set of operations to·i, +i, and !i and by dropping all terms fromTmE andTmC.
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The axioms are restricted to application, sum, reflexivity,and inspection for eachi.
The definition of constant specification is changed accordingly.

We show thatLP
C

h is conservative overLPh by adapting the technique from (Fitting,
2008), for which evidence terms are essential.

DEFINITION 24. —The mapping× : FmLPC

h

→ FmLPh
is defined as follows:

1. P×
n := Pn for propositional variablesPn ∈ Prop;

2. × commutes with propositional connectives;

3. ([t]⊛A)× :=

{

A× if t contains a subterms ∈ TmE ∪ TmC,

[t]⊛A× otherwise.

THEOREM 25. —Let CS be a constant specification forLP
C

h. For an arbitrary for-
mulaA ∈ FmLPh

,

if LP
C

h(CS) ⊢ A, then LPh(CS×) ⊢ A ,

whereCS× := {[c]iE× : [c]iE ∈ CS}.

PROOF. — SinceA× = A for anyA ∈ FmLPh
, it suffices to demonstrate that for any

formulaD ∈ FmLPC

h

, if LP
C

h(CS) ⊢ D, thenLPh(CS×) ⊢ D×, which can be done by

induction on the derivation ofD.

CasewhenD is a propositional tautology. Then so isD×.

CasewhenD = [t]iB → B is an instance of the reflexivity axiom. ThenD× is either
the propositional tautologyB× → B× or [t]iB

× → B×, an instance of the reflexivity
axiom ofLPh.

CasewhenD = [t]iB → [!t]i [t]iB is an instance of the inspection axiom. Then
D× is either the propositional tautologyB× → B× or [t]iB

× → [!t]i [t]iB
×, an

instance of the inspection axiom ofLPh.

CasewhenD = [t]∗(B → C) → ([s]∗B → [t · s]∗C) is an instance of the application
axiom. We distinguish the following possibilities:

1. Botht ands contain a subterm from TmE ∪TmC. In this subcase,D× has the form
(B× → C×) → (B× → C×), which is a propositional tautology and, thus, an
axiom ofLPh.

2. Neithert nor s contains a subterm from TmE ∪ TmC. ThenD× is an instance of
the application axiom ofLPh.

3. Termt contains a subterm from TmE ∪ TmC while s does not. ThenD× has the
form (B× → C×) → ([s]iB

× → C×), which can be derived inLPh(CS×) from
the reflexivity axiom[s]iB

× → B× by propositional reasoning. In this subcase,

translation× does not map an axiom ofLP
C

h to an axiom ofLPh.
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4. Term s contains a subterm from TmE ∪ TmC while t does not. ThenD× is
[t]i(B

× → C×) → (B× → C×), an instance of the reflexivity axiom ofLPh.

CasewhenD = [t]∗B ∨ [s]∗B → [t + s]∗B is an instance of the sum axiom. We
distinguish the following possibilities:

1. Botht ands contain a subterm from TmE ∪TmC. In this subcase,D× has the form
B× ∨ B× → B×, which is a propositional tautology and, thus, an axiom ofLPh.

2. Neithert nor s contains a subterm from TmE ∪ TmC. ThenD× is an instance of
the sum axiom ofLPh.

3. Termt contains a subterm from TmE ∪ TmC while s does not. ThenD× has the
form B×∨ [s]iB

× → B×, which can be derived inLPh(CS×) from the reflexivity
axiom [s]iB

× → B× by propositional reasoning. This is another subcase when
translation× does not map an axiom ofLP

C

h to an axiom ofLPh.

4. Terms contains a subterm from TmE ∪ TmC while t does not. ThenD× has the
form [t]iB

× ∨B× → B×, which can be derived inLPh(CS×) from the reflexivity
axiom [t]iB

× → B× by propositional reasoning. This is another subcase when
translation× does not map an axiom ofLP

C

h to an axiom ofLPh.

CasewhenD = [t1]1B∧· · ·∧[th]hB → [〈t1, . . . , th〉]EB is an instance of the tupling
axiom. We distinguish the following possibilities:

1. At least one of theti’s contains a subterm from TmE∪TmC. ThenD× has the form
C1 ∧ · · · ∧ Ch → B× with at least oneCi = B× and is, therefore, a propositional
tautology.

2. None of theti’s contains a subterm from TmE ∪ TmC. ThenD× has the form
[t1]1B

× ∧ · · · ∧ [th]hB× → B×, which can be derived inLPh(CS×) from the
reflexivity axiom. This is another subcase when translation× does not map an
axiom ofLP

C

h to an axiom ofLPh.

CasewhenD is an instance of the projection axiom[t]EB → [πit]iB or of the co-
closure axiom:i.e., [t]CB → [ccl1(t)]EB or [t]CB → [ccl2(t)]E [t]CB. ThenD× is the
propositional tautologyB× → B×.

CasewhenD = B∧ [t]C(B → [s]EB) → [ind(t, s)]CB is an instance of the induction
axiom. ThenD× is the propositional tautologyB× ∧ (B× → B×) → B×.

CasewhenD is derived by modus ponens is trivial.

CasewhenD is [c]⊛B ∈ CS. ThenD× is eitherB× or [c]iB
×. In the former case,

B× is derivable inLPh(CS×), as shown above, becauseB is an axiom ofLP
C

h; in the
latter case,[c]iB× ∈ CS×. �

REMARK 26. — Note thatCS× need not, in general, be a constant specification
for LPh because, as noted above, for an axiomD of LP

C

h, its imageD× is not al-
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ways an axiom ofLPh. To ensure thatCS× is a proper constant specification, all
formulae of the forms

(A → B) → ([s]iA → B) , A ∨ [s]iA → A ,

[t1]1A ∧ · · · ∧ [th]hA → A , [t]iA ∨ A → A

have to be made axioms ofLPh. Another option is to use Fitting’s concept ofembed-
dingone justification logic into another, which involves replacing constants inD with
more complicated terms inD× (see (Fitting, 2008) for details). �

6. Forgetful projection and a word on realization

Most justification logics are introduced as explicit counterparts to particular modal
logics in the strict sense described in Sect. 1. Although therealization theorem forLP

C

h

remains an open problem, in this section we prove that each theorem of our logicLP
C

h

states a valid modal fact if all the terms are replaced with the corresponding modalities,
which is one direction of the realization theorem. We also discuss approaches to the
more difficult opposite direction.

In the modal language of common knowledge, modal formulae are defined by the
grammar

A ::= Pj | ¬A | (A ∧ A) | (A ∨ A) | (A → A) | �iA | EA | CA ,

wherePj ∈ Prop. The set of all modal formulae is denoted by FmS4C

h

. The Hilbert

systemS4
C

h (Meyer et al., 1995) is given by the modal axioms ofS4 for individual
agents, by the necessitation rule for�1, . . . , �h, andC, by modus ponens, and by the
axioms

C(A → B) → (CA → CB), CA → A, EA ↔ �1A ∧ · · · ∧ �hA,

A ∧ C(A → EA) → CA, CA → E(A ∧ CA).

DEFINITION 27 (FORGETFUL PROJECTION). — The mapping◦ : FmLPC

h

→ FmS4C

h

is defined as follows:

1. P ◦
j := Pj for propositional variablesPj ∈ Prop;

2. ◦ commutes with propositional connectives;

3. ([t]iA)◦ := �iA
◦;

4. ([t]EA)◦ := EA◦;

5. ([t]CA)◦ := CA◦.
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LEMMA 28. — Let CS be a constant specification. For any formulaA ∈ FmLPC

h

, if

LP
C

h(CS) ⊢ A, thenS4
C

h ⊢ A◦.

PROOF. — The proof is by an easy induction on the derivation ofA. �

DEFINITION 29 (REALIZATION ). — A realization is a mappingr : FmS4C

h

→ FmLPC

h

such that(r(A))◦ = A. We usually writeAr instead ofr(A).

We can think of a realization as a function that replaces occurrences of modal
operators (includingE andC) with evidence terms of the corresponding type. The
problem of realization for a given homogeneousC-axiomatically appropriate constant
specificationCS can be formulated as follows:

Is there a realizationr such thatLP
C

h(CS) ⊢ Ar for any theoremA of S4
C

h?

A positive answer to this question would constitute the moredifficult direction of the
realization theorem, which is often demonstrated by means of induction on a cut-free
sequent proof of the modal formula.

The cut-free systems forS4
C

h presented in (Alberucciet al., 2005) and (Brünnler
et al., 2009) are based on an infinitaryω-rule of the form

EmA, Γ for all m ≥ 1

CA, Γ
(ω).

However, realizing such a rule presents a serious challengebecause it requires achiev-
ing uniformity among the realizations of the approximantsEmA.

Finitizing this ω-rule via the finite model property, Jägeret al. obtain a finitary
cut-free system (Jägeret al., 2007). Unfortunately, the “somewhat unusual” structural
properties of the resulting system (see discussion in (Jäger et al., 2007)) make it hard
to use it for realization.

The non-constructive, semantic realization method from (Fitting, 2005) cannot be
applied directly because of the non-standard behavior of the canonical model (see
Remark 16).

Perhaps the infinitary system presented in (Bucheliet al., 2010b), which is finitely
branching but admits infinite branches, can help in proving the realization theorem
for LP

C

h. For now this remains work in progress.

7. Coordinated attack

To illustrate our logic, we will now analyze the coordinatedattack problem along
the lines of (Faginet al., 1995), where additional references can be found. Let us
briefly recall this classical problem. Suppose two divisions of an army, located in
different places, are about to attack their enemy. They havesome means of communi-
cation, but these may be unreliable, and the only way to secure a victory is to attack
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simultaneously. How should generalsG andH who command the two divisions coor-
dinate their attacks? Of course, generalG could send a messagemG

1 with the time of
attack to generalH . Let us use the propositiondel to denote the fact that the message
with the time of attack has been delivered. If the generals trust the authenticity of the
message, say because of a signature, the message itself can be taken as evidence that
it has been delivered. So generalH , upon receiving the message, knows the time of
attack: i.e.,

[

mG
1

]

H del. However, since communication is unreliable,G considers it
possible that his message has not been delivered. But if general H sends an acknowl-
edgmentmH

2 , he in turn cannot be sure whether the acknowledgment has reachedG,
which prompts yet another acknowledgmentmG

3 by generalG, and so on.

In fact, common knowledge ofdel is a necessary condition for the attack. Indeed,
it is reasonable to assume it to be common knowledge between the generals that they
should only attack simultaneously or not attack at all,i.e., that they attack only if both
know that they attack:[t]C(att → [s]E att) for some termss and t. Thus, by the
induction axiom, we getatt → [ind(t, s)]C att. Another reasonable assumption is that
it is common knowledge that neither general attacks unless the message with the time
of attack has been delivered:[r]C(att → del) for some termr. Using the application
axiom, we obtainatt → [r · ind(t, s)]C del.

We now show that common knowledge ofdel cannot be achieved and that con-
sequently no attack will take place, no matter how many messages and acknowledg-
mentsmG

1 , mH
2 , mG

3 , . . . are sent by the generals, even if all the messages are suc-
cessfully delivered.

In the classical modeling without evidence, the reason is that the sender of the last
message always considers the possibility that his last message, saymH

2k, has not been
delivered. To give a flavor of the argument carried out in detail in (Faginet al., 1995),
we provide a countermodel wheremH

2 is the last message, it has been delivered, but
H is unsure of that:i.e.,

[

mG
1

]

H del,
[

mH
2

]

G

[

mG
1

]

H del, but ¬ [s]H
[

mH
2

]

G

[

mG
1

]

H del

for all termss. Consider any modelM whereW := {0, 1, 2, 3}, ν(del) := {0, 1, 2},
RG is the reflexive closure of{(1, 2)}, RH is the reflexive closure of{(0, 1), (2, 3)}.
The only requirements on the evidence functionE are to satisfydel∈ EH

(

0, mG
1

)

and
[

mG
1

]

H del∈ EG

(

0, mH
2

)

. WhateverEC is, we haveM, 0 1 [s]H
[

mH
2

]

G

[

mG
1

]

H del
andM, 0 1 [t]C del for anys andt becauseM, 3 1 del.

Let us investigate a different scenario. In our models with evidence terms, there is
an alternative possibility for the lack of knowledge: insufficient evidence. For exam-
ple, G may receive the acknowledgmentmH

2 but may not consider it to be evidence
for

[

mG
1

]

H delbecause the signature ofH is missing. We now demonstrate that com-
mon knowledge of the time of attack cannot emerge, basing theargument solely on the
lack of common knowledge evidence, in contrast to the classical approach. Consider
the M-modelM = (W, R, E , ν) obtained as follows:W := {w}, Ri := {(w, w)},
ν(del) := {w}, andE is the minimal evidence function such thatdel ∈ EH

(

w, mG
1

)
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and
[

mG
1

]

H del ∈ EG

(

w, mH
2

)

. In this model,M, w 1 [t]C del for any evidence
term t becausedel /∈ EC(w, t) for any t. To prove the latter statement, it is sufficient
to note that for any termt, by Lemma 28,

0
[

mG
1

]

H del∧
[

mH
2

]

G

[

mG
1

]

H del→ [t]C del (9)

because
S4

C

h 0 �H del∧ �G�H del→ C del ,

which is easy to demonstrate. LetMcan be the canonical epistemic model meeting
the empty constant specification andEcan be its evidence function. Since the negation
of the formula from (9) must be satisfiable, for eacht there is a worldwt from Mcan

such thatdel ∈ Ecan
H

(

wt, m
G
1

)

and
[

mG
1

]

H del ∈ Ecan
G

(

wt, m
H
2

)

, but by the Truth
Lemma 17,del /∈ Ecan

C
(wt, t). SinceEcan ↾ ({wt} × Tm) satisfies all the closure

conditions, the minimality ofE implies thatEC(w, s) ⊆ Ecan
C

(wt, s) for any terms. In
particular,del /∈ EC(w, t) for any termt.

8. Discussion

In this paper, we have provided a system of evidence terms fordescribing common
knowledge, which can be used instead of modal logic representation. One benefit of
this new representation is that several proofs that are quite hard in the modal case,
e.g., those of completeness and conservativity, are made easierin our logic. There are
other merits to this system as well.

In the single-agent case, as is pointed out in (Artemov, 2008), an explicit codifi-
cation of knowledge by evidence (in Artemov’s case, of the individual knowledge of
the agent) enables knowledge to be analyzed and recorded. Recording and subsequent
retrieving of evidence can be viewed as a form of single-agent communication, with
which any mathematician is familiar. A proof of a theorem, ifnot recorded immedi-
ately, may require as much effort to be restored later as finding it required originally.
This role of evidence terms in knowledge transfer is reminiscent of what is calledex-
plicit knowledgein Knowledge Management3 and is contrasted withtacit knowledge.
As described in (Nonaka, 1991), “Explicit knowledge is formal and systematic. For
this reason, it can be easily communicated and shared, in product specifications or a
scientific formula or a computer program.” In this sense, evidence terms in the single-
agent case serve as a kind of explicit knowledge. Indeed, if an agent can find a proof
he/she wrote down a year ago, it will restore his/her knowledge of the statement of the
theorem.

The situation with common knowledge evidence is more complicated. An evi-
dence of common knowledge of some factA, even when transmitted to all agents and

3. The term “explicit knowledge” sounds so natural that it has been used in different areas
with completely different meanings. For instance, in epistemic logic, explicit knowledge is a
type of knowledge that is not logically omniscient, as opposed to implicit knowledge (Faginet
al., 1995).
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received by them4, does not generally create common knowledge ofA for the same
reasons that were discussed in the previous section. In fact, there exist general results
about the impossibility of achieving common knowledge via certain modes of commu-
nication, e.g., in asynchronous systems (Faginet al., 1995). Clearly, an introduction
of evidence terms cannot and should not change this general phenomenon.

However, there exist modes of communication that ensure that a transmission of a
common knowledge evidence term to all the agents in the groupdoes create common
knowledge among the agents. A prime example of such a mode is,of course, public
announcements, a well-known method of creating common knowledge. Thus, one
of the benefits of our system of terms is a finite encoding of common knowledge,
which is largely infinitary in nature. This finite encoding enables to transmit evidence,
which, under certain modes of communication, creates common knowledge among the
agents. Of course, common knowledge can also be created by a public announcement
of the fact itself rather than of evidence in support of the fact. There is an important
difference, however. When, in his seminal 1989 work (Plaza,2007), Plaza analyzed
one of the standard stories used to explain the concept of common knowledge, the
Muddy Children Puzzle, in order to explain how common knowledge is created by a
public announcement, he had to assume that the announcements are truthful and the
agents are trustful. Indeed, an announced fact cannot become common knowledge,
or any kind of knowledge, if the fact is false. And clearly, ifthe agents do not trust
the announcement, their knowledge would only change provided they can verify the
announced facts.

Verifiability of announcements is exactly what we achieve byintroducing evidence
terms into the language. An agent who receives a justification for A needs neither to
assume thatA is true nor to trust the speaker because the agent can simply verify the
received information. A similar idea of supplying messageswith justifications can
be used to describe a distributed system that authorizes thedisbursement of sensitive
data, such as medical records, while maintaining a specifiedprivacy policy (Blasset
al., 2011). Interestingly, like in our analysis of the coordinated attack, the authors also
propose to use the sender’s signature as evidence for the information about his/her
intentions or policies.

Verifiability of evidence turns out to be sufficient for creating common knowledge.
Indeed, Yavorskaya considered a situation where agents canverify each other’s evi-

dence:[t]iA →
[

!ji t
]

j [t]iA for i 6= j (Yavorskaya (Sidon), 2008). The!ji -operation

implicitly presumes communication sincei’s evidencet has to be somehow available
to agentj. It is not hard to show that an addition of this operation to our logic leads
to a situation where any individual knowledge also automatically creates common
knowledge of the same fact: for any termt ∈ Tmi, there is a terms(x) ∈ TmC such
that⊢ [t]iA → [s(t)]CA. However, the mode of communication necessary for the

4. Unreliable communication does not prevent knowledge from being explicit. Thus, in the
context of explicit vs. tacit knowledge, we only discuss theusefulness of evidence terms that
have been received by the agent(s).
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!ji -operation to work must be reliable and immediate, which restricts the applicability
of such a logic; for instance, it precludes an analysis of asynchronous systems. In
summary, the kind of knowledge that can be induced via justification transmission is
generally the same as in the case of statement transmission and depends primarily on
the mode of communication, on its reliability.

So another benefit of introducing evidence terms is their verifiability, including
cases when evidence terms are communicated between agents.Yet another benefit,
this time on the meta-logical level, is an ability to analyzecommon knowledge and the
process of its creation. Similar to Artemov’s analysis of the famous Gettier examples
in (Artemov, 2008), the system of evidence terms for common knowledge can also be
used to uncover hidden assumptions. Further, as shown in theprevious section, it can
yield new scenarios for well-known epistemic puzzles.

Our contribution in this paper is technical in the sense thatwe aim to study neither
the nature of common knowledge nor ways of transmitting datato achieve it. Our
goal is to provide tools for analyzing the fine structure of common knowledge, tools
that can be used, irrespective of the mode of communication between the agents, even
when the communication itself remains on the meta-logical level as in the standard
rendition of the Muddy Children Puzzle, e.g., in (Faginet al., 1995).

9. Conclusions

We have presented a justification logicLP
C

h with common knowledge, which is a
conservative extension of the multi-agent justification logic LPh. The major open
problem at the moment remains proving the realization theorem, one direction of
which we have demonstrated.

Our analysis of the coordinated attack problem in the language ofLP
C

h shows that
access to evidence creates more alternatives than the classical modal approach. In
particular, the lack of knowledge can occur either because messages are not delivered
or because evidence of authenticity is missing.

We have mostly concentrated on the study ofC-axiomatically appropriate constant
specifications. For modeling distributed systems with different reasoning capabilities
of agents, it is also interesting to consideri-axiomatic appropriate,E-axiomatic ap-
propriate, and heterogeneous constant specifications, where only certain aspects of
reasoning are common knowledge.

We established soundness and completeness with respect to epistemic models and
singleton M-models. The question remains whether other semantics for justification
logics such as (arithmetical) provability semantics (Artemov, 1995; Artemov, 2001)
and game semantics (Renne, 2009b) can be adapted toLP

C

h. Further avenues of re-
search include but are not limited to the decidability ofLP

C

h, the comparison of its
complexity to that ofS4

C

h, and the extension of our treatment of common knowledge
to the logics with the individual modalities of typeK, K5, etc.
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A long-term goal of our research is to find justification counterparts of dynamic
epistemic logics with common knowledge. A step in this direction (although still
without common knowledge) was made in (Bucheliet al., 2010a) by proposing a
justification counterpart to public announcement logic. Clearly, both types of systems,
explicit counterparts to common knowledge logics and to dynamic epistemic logics,
will have to be studied on their own first, before being combined.
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