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1. Introduction

Justification logicsare epistemic logics that explicitly include justificatgofor
the agents’ knowledge (Artemov, 2008). The first logic ostkind, theLogic of
ProofsLP, was developed by Artemov to provide the modal Iogdawith provability
semantics (Artemov, 1995; Artemov, 2001). The languageistifjcation logics has
also been used to create a new approach to the logical ommigcproblem (Artemov
et al,, 2009) and to study self-referential proofs (Kuznets, 3010

Instead of statementd is known denoted A, justification logics reason about
justifications for knowledge by using the constrii¢fd to formalize statementsis
a justification for A, where, dependent on the application, évédence term can be
viewed as an informal justification or a formal mathematwalof. Evidence terms
are built by means of operations that correspond to the aximif4, as is illustrated
in Fig. 1.
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S4 axioms LP axioms
0(A — B) — (DA — OB) [t](A— B) — ([s]A — [t-s]B) (application)
0A— A [t]A — A (reflexivity)
0A — 0O0OA [t]A — [lt][t]A (inspection
[t]AV [s]A — [t + s]A (sum)

Figure 1. Axioms ofS4 andLP

Artemov has shown that the Logic of ProdfB is anexplicit: counterpartof the
modal logicS4 in the following formal sense: each theorenLéfbecomes a theorem
of S4 if all the terms are replaced with the modalifly and, vice versa, each theorem
of S4 can be transformed into a theoremldf if the occurrences of modality are re-
placed with suitable evidence terms (Artemov, 2001). Tttedg@rocess is calleal-
ization, and the statement of correspondence is caliedbzation theoremNote that
the operationt introduced by the sum axiom in Fig. 1 does not have a modabgnal
but it is an essential part of the proof of the realizatiorotieen in (Artemov, 2001).
Explicit counterparts for many normal modal logics betw&eandS5 have been de-
veloped (see a recent survey in (Artemov, 2008) and a unifmaof of realization
theorems for all single-agent justification logics in (Bniler et al., 2010)).

The notion ofcommon knowledgie essential in the area of multi-agent systems,
where coordination among agents is a central issue. Forraubhb introduction to
epistemic logics in general and to common knowledge in @algi, one can refer to
the standard textbooks (Fagih al, 1995; Meyetret al,, 1995). Informally, common
knowledge ofA is defined as the infinitary conjuncti@verybody knowsl and ev-
erybody knows that everybody knowsand so on This is equivalent to saying that
common knowledge ofl is the greatest fixed point of

A X.(everybody knowsA and everybody knows') . Q)

An explicit counterpart of McCarthy'any fool knowsommon knowledge modal-
ity (McCarthy et al,, 1978), where common knowledge dfis defined as an arbi-
trary fixed point of (1), is presented in (Artemov, 2006). Te&ationship between
the traditional common knowledge from (Fagihal,, 1995; Meyeret al, 1995) and
McCarthy’s version is studied in (Antonakos, 2007).

In this paper, we develop a multi-agent justification logitwevidence terms for
individual agents as well as for common knowledge, with titention to provide an
explicit counterpart of thé-agent modal logic of traditional common knowlecfgél:.
For the sake of compactness and readability, we will not yezups of agents.

1. For other meanings of “explicit” see Sect. 8.
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Multi-agent justification logics with evidence terms forchaagent are considered
in (Yavorskaya (Sidon), 2008; Renne, 2009a; Artemov, 20b0) common knowl-
edge is not present in any of them. Renne’s system combiaésrés of modal and
dynamic epistemic logics (Renne, 2009a) and hence canndiréely compared to
our system. Artemov’s interest lies mostly in exploring aeaf two agents with un-
equal epistemic powers:.g, Artemov’s Observer has sufficient evidence to reproduce
the Object Agent’s thinking, but not vice versa (Artemov1@D Yavorskaya studies
various operations of evidence transfer between agent®(3kaya (Sidon), 2008).
Yavorskaya’s minimaltwo-agent justification logit P?, which is an explicit counter-
part of S4,, is the closest to our system. We will show that in the casevofagents
our system is a conservative extensior Bf.

An epistemic semantics farP, F-models was created by Fitting by augmenting
Kripke models with arevidence functiothat specifies which formulae are evidenced
by aterm at a given world (Fitting, 2005). Independentlyriyi&hev proved a stronger
completeness result fdrP with respect to singleton F-models (Mkrtychev, 1997),
now known asM-models where the role of the accessibility relation is completely
taken over by the evidence function. The semantics of F-fsduEs been adapted
to the whole family of single-agent justification logics r(fdetails, see (Artemov,
2008)). Artemov extends F-models to the language with bettieace terms for
McCarthy’s common knowledge modality and ordinary modksifor the individual
agents (Artemov, 2006), creating the most general type stapic models, some-
times calledAF-modelswhere common evidence terms are given their own accessibil
ity relation, which does not directly depend on the accdgyibelations for individual
modalities. The absence of ordinary modalities in Yavoysksatwo-agent justifica-
tion systems provides for a stronger completeness restht n@spect to M-models
(Yavorskaya (Sidon), 2008).

The paper is organized as follows. In Sect. 2, we introduemguage and give an
axiomatization of a family of multi-agent justification leg with common knowledge.
In Sect. 3, we prove their basic properties including therimalization property, which
is characteristic of all justification logics. In Sect. 4, develop an epistemic seman-
tics and prove soundness and completeness with respeds teethantics as well as
with respect to singleton models, thereby demonstratiadittite model property. In
Sect. 5, we show that for the two-agent case, our logic is aawative extension of
Yavorskaya’s minimal two-agent justification logic. In $e8, we demonstrate how
our logic is related to the modal logic of traditional commarowledge and discuss
the problem of realization. In Sect. 7, we provide an analg$ithe coordinated at-
tack problem in our logic. Finally, in Sect. 8, we discuss hbe newly introduced
terms affect the agents, including their ability to comnuaté information in various
communication modes.

2. Minimality here is understood in the sense of the minimasfer of evidence.
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2. Syntax

To create an explicit counterpart of the modal logic of comrknowledgeS4<,
we use its axiomatizatiovia the induction axiom from (Meyaest al, 1995) rather than
via the induction rule to facilitate proving the internalizatiproperty for the resulting
justification logic. We supply each agent with its own copyesfns from the Logic of
Proofs, while terms for common and mutual knowledge emptiitaonal operations.
The fact that each agent has its own set of operations makesamnework more
flexible. For instance, agents may be thought of as repriesgeditferent arithmetical
proof systems that use different encodings (cf. (Yavorak&jdon), 2008)).

As motivated in (Buchelet al, 2010b), a proof o€ A can be viewed as an infinite
list of proofs of the conjunct&™ A from the representation of common knowledge
through an infinite conjunction. To generate a finite repneéon of this infinite list,
we use an explicit counterpart of the induction axiom

AN [Hc(A — [s]eA) — [ind(t, s)]cA

with a binary operationnd(-, ). To facilitate access to the elements of the list, ex-
plicit counterparts of the co-closure axiom provide evicketerms that can be seen as
splitting the infinite list into its head and tail,

lcA — [ccli(B)]eA ,  [tlcA — [ccla(t)]e [tlcA |

by means of two unary co-closure operatianis (-) andccla(-).

Evidence terms for mutual knowledge are viewed as tupldsadfidividual agents’
evidence terms. The standard tupling operation/aodary projections are employed
as means of translation between the individual agents’ antiah knowledge evi-
dence. Note that, strictly speaking, evidence terms forualutnowledge are not
necessary because they could be defined, just like the nyoftalimutual knowledge
can be defined in the modal case. However, the resultingrmystauld be very cum-
bersome in notation and usage.

While only two of the three operations & terms (see Fig. 1) are adopted for
common knowledge evidence and none is adopted for mutuallkdge evidence, it
will be shown in Sect. 3 that three out of the four remainingrapions are definable,
with a notable exception of inspection for mutual knowledag is to be expected.
While the usage of the application operation for common Kedge evidence terms is
justifiable on the grounds of the corresponding md#glaxiom for common knowl-
edge, the necessity of the sum operation for common knowlegtiglence terms is
less clear and can only be shown once the realization theisrenoved (see Sect. 6
for details).

We consider a system df agents. Throughout the papéralways denotes an
element of{1,..., h}, x always denotes an elementff, ..., h,C}, and® always
denotes an element éi, ..., h E,C}.
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Let Cons, := {c®,c5,...} and Vag, := {2, z¥,...} be countable sets of
proof constantandproof variablesrespectively for eackw. The sets Tm, ..., Tmy,
Tmg, and Tt of evidence terms for individual agerdsd formutualandcommon
knowledgeespectively are inductively defined as follows:

1. Cong C Tmg and Vag C Tmg;
. it € Tm; for anyt € Tm;;

. t+.s € Tm, andt -, s € Tm, for anyt,s € Tm,;

2
3
4. (t1,...,tp) € Tmg foranyty € Tmy, ... t, € Tmy;
5. mit € Tm; for anyt € Tmg;

6. ccly(t) € Tmg andccly(t) € Tme for anyt € Tmg;
7. ind(t, s) € Tmc for anyt € Tmc and anys € Tme.

Tm:=Tm; U---UTm, U Tmg U Tmc denotes the set of all evidence terms. The
indices of the operatioris+, and- will most often be omitted if they can be inferred
from the context. A term is callegroundif no proof variables occur in it.

Let Prop:= { Py, P, ... } be a countable set pfopositional variablesFormulae
are denoted byl, B, C, ... and are defined by the grammar

A= Py | =A[(ANA) | (AVA) | (A= A) | oA ,

wheret € Tmg andP; € Prop. The set of all formulae is denoted bYLFP'Eﬂ We
adopt the following convention: whenever a formfilg A is used, it is assumed to be
well-formed:i.e, it is implicitly assumed that terme Tmg,. This enables us to omit
the explicit typification of terms.

Axioms of LPS:

1. all propositional tautologies

2. [t]«(A = B) — ([s]«+A — [t- s].B) (application)
3. [t AV [s]sA = [t + s].A (sum)
4. [tiA— A (reflexivity)
5. [t];A — ['t]; [t]: A (inspection)
6. [t1]iANA - Altp]nA — [(t1,. ... th)]eA (tupling)
7. [tleA — [mit]; A (projection)
8. [t]cA — [cchi(t)]eA, [tlcA — [ccla(t)]e [t]cA (co-closure)
9. AN [t]c(A — [s]eA) — [ind(t, s)]cA (induction)
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A constant specificatioiS is any subset

CS C U {[c]®A . ¢ € Cons, andA is an axiom oﬂ_Pg} .
®e{l,...,h,E,C}

A constant specificatiodS is called C-axiomatically appropriatef, for each ax-
iom A, there is a proof constante Cong such thafc]cA € CS. A constant specifi-
cationCS is calledhomogeneoysf CS C {[cJe A : ¢ € Cons; andA is an axion}
for some fixed®: i.e, if for all [c]g A € CS the constants are of the same type.

For a constant specificati@hsS, the deductive systerer%(CS) is the Hilbert sys-
tem given by the axioms dfP% above and by the rules modus ponens and axiom
necessitation:

A A—B
B ’ [cle A

, Where[c]g A € CS.

By LP§ we denote the systetrP (CS) with

CS = {[c]CA : ¢ € Cong andA is an axiom oﬂ_Pg} . 2)

For an arbitranyCS, we write A cs A to state thatd is derivable from a set of

formulaeA in LP§(CS) and omitCS when working with the constant specification
from (2) by writing A - A. We also omitA whenA = & and writel-¢s A ort A,

in which cased is called a theorem dfP$ (CS) or of LP$ respectively. We usA, A

to meanA U {A}.

3. Basic properties

In this section, we show that our logic possesses the stdpdaperties expected of
any justification logic. In addition, we show that the op&nas on terms introduced in
the previous section are sufficient to express the opeatibsum and application for
mutual knowledge evidence and the operation of inspecttocdmmon knowledge
evidence. This is the reason why, -g, and!c are not primitive connectives in the
language. It should be noted that no inspection operatiomfdual evidence terms
can be defined, which follows from Lemma 28 in Sect. 6 and tbetfeatEA — EEA
is not a valid modal formula.

LEMMA 1. — For any constant specificatiahS and any formulaed and B:

1. bes [tleA — Aforall t € Tmg; (E-reflexivity)

2. foranyt, s € Tmg, there is a ternt -g s € Tmg such that
Fes [tle(A — B) — ([s]ed — [t e s|eB); (E-application)

3. foranyt, s € Tmg, there is atermt +g s € Tmg such that
Fes [t]EA \ [S]EA — [t —+E S]EA; (E-sunj
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4. foranyt € Tmc and anyi € {1,...,h}, there is aterm ;t € Tm; such that

Fes [tleA — [Lit]i4; (i-conversion
5. Fes [tJjcA — Aforall t € Tmc. (C-reflexivity)
PROOF —

. Immediate by the projection and reflexivity axioms.

. Sett g s:=(mt1 TS, ..., Tt p THS).

1
2
3. Sett +¢ s := (mt+1mS,...,Tht +n THS).
4. Set| ;t := mccli(t).

5

. Immediate by 4. and the reflexivity axiom. |
Unlike Lemma 1, Lemma 2 requires that a constant specificati® be C-axio-
matically appropriate.
LEMMA 2. — LetCS beC-axiomatically appropriate andl be a formula.

1. Foranyt € Tmc, there is a termict € Tm¢ such that
Fes [tlcA — [let]c [tlcA. (C-inspection

2. Foranyt € Tmc, there is a term= t € Tmc such that
Fes [ﬁ]cA — [e t]c [CC|1(t)]EA. (C-Shlft)

PROOF —

1. Setlct := ind(c, ccla(t)), where[c]c([t]c A — [ccla(t)]e [t]cA) € CS.
2. Setet = C (!Ct), WheI'E[C/]C([ﬁ]CA — [CC|1(ﬁ)]EA) e CS.

The existence of constant@nd¢’ is guaranteed by thé-appropriateness ¢iS. B

The following two lemmas are standard in justification I@gi€their proofs can be
taken almost word for word from (Artemov, 2001) and are, ¢fi@re, omitted here.

LEmMmMA 3 (DEDUCTION THEOREM). — LetCS be a constant specification and
AU{A, B} C FmLP,g- ThenA, A tcs Bifand only ifAtecs A — B.

LEMMA 4 (SUBSTITUTION). — For any constant specificatiosS, any proposi-
tional variable P, anyA U {A, B} C Fmipc, anyz € Varg, and anyt € Tmg,

if Ales A, thenA(ac/t,P/B) I_CS(m/t.,P/B) A(l’/t,P/B) )

whereA(z/t, P/ B) denotes the formula obtained by simultaneously replacihaca
currences ofc in A with ¢ and all occurrences oP in A with B and A(x/t, P/B)
andCS(z/t, P/B) are defined accordingly.
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The following lemma states that our logic can internalizeoitvn proofs, which is
an important property of justification logics.

LEMMA 5 (C-LIFTING). — LetCS be a homogeneouSaxiomatically appropriate
constant specification. For any formulak By, ..., B,,C4,...,C,, and any terms
S1,...,8, € TMc, if

[silcBu, ..., [sn]cBn, C1, ..., O bes A

then for eachw there is a termt (25, .., 25,47, ..., y€) € Tmg such that
[s1]cBi, ... [sn]cBn, [y1]eCh, - - - [Yml@Cm Fes [to(s15- -+, 80 Y15+ -+ Um)] 0 A
for fresh variablesy, . . ., x,, € Varc andy, ...,y € Varg.

PROOF — We proceed by induction on the derivation4f

If Ais an axiom, there is a constantc Cong such thatc]cA € CS because
CS is C-axiomatically appropriate. Then take

tc :=c, t; :==|;c, tg :=ccli(c)
and use axiom necessitation, axiom necessitation-@othversion, or axiom necessi-
tation and the co-closure axiom respectively.

ForA = [s;]cBj,1 < j <n, take
tc Z:!CIL'J', ti ::lilcxj; tE = CC|2(£L']')

for a fresh variabler; € Varc and, afterz; is replaced withs;, useC-inspection,
C-inspection and-conversion, or the co-closure axiom respectively.

ForA = C;,1 < j < m, taketg := y; for a fresh variable; € Varg.

For A derived by modus ponens frof — A and D, by induction hypothesis
there are termsg, sg € Tmg such thafrg|e (D — A) and[sg|e D are derivable.
Takets = re ‘@ Se and usew-application, which is an axiom fop = ¢ and for
@ = C or follows from Lemma 1 for® = E.

For A = [c]cE € CS derived by axiom necessitation, take
tc :=cc, t; :=|ilce, tg == ccla(c)

and useC-inspection,C-inspection and-conversion, or the co-closure axiom re-
spectively. No other instances of the axiom necessitatida are possible. Indeed,
CS must contain formulae of the type|cE because ofC-axiomatic appropriate-
ness. The homogeneity 6iS then means that formulae neither of typg £ nor
of type[cJe £ can occur irCS. |

COROLLARY 6 (CONSTRUCTIVE NECESSITATION. — LetCS be a homogeneous
C-axiomatically appropriate constant specification. Foryaiormula A, if Fcs A,
then for eachw there is a ground term € Tmg such that-cs [t]g A.
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The following two lemmas show that our systé\ can internalize versions of

the induction rule used in various axiomatization§¢f (see (Buchelet al., 2010b)
for a discussion of several axiomatizations of this kind).

LEMMA 7 (INTERNALIZED INDUCTION RULE 1). — LetCS be a homogeneous
C-axiomatically appropriate constant specification. Foryaerms € Tmg and any
formula 4, if Fes A — [s]eA, thereist € Tmc such that-cs A — [ind(¢, s)]cA.

PROOF — By constructive necessitationgs [t]c(A — [s|gA) for somet € Tmc.
It remains to use the induction axiom and propositionaloaas). |

LEMMA 8 (INTERNALIZED INDUCTION RULE 2). — LetCS be a homogeneous
C-axiomatically appropriate constant specification. ForyalormulaeA and B and
any terms € Tmg, if we have-¢s B — [s]e(A A B), then there exists € Tm¢ and

¢ € Cong such that-¢cs B — [c¢-ind(t, s)]cA, where[c]c(AAN B — A) € CS.

PROOF — Assume
Fes B — [S]E(A N B) . (3)
From this we immediately gétcs A A B — [s]e(A A B). Thus, by Lemma 7, there

is at € Tmc with
Fes ANB — [ind(t, s)]c(AAB) . (4)

SinceCS is C-axiomatically appropriate, there is a constaat Cong such that
Fes [dc(ANB — A) . 5)
Making use ofC-application, we find by (4) and (5) that
Fes AAB — [c-ind(t, s)]cA . (6)

From (3) we get by-reflexivity that-¢s B — A A B. This, together with (6), finally
yieldstcs B — [c - ind(t, s)]c A. |

4. Soundness and completeness

DEFINITION 9. — An (epistemic) model meeting a constant specificatishis a
structureM = (W, R, £, v), where(W, R, v) is a Kripke model fo54;, with a set of
possible world$V # @, with a functionR: {1,...,h} — P(W x W) that assigns a
reflexive and transitivaccessibility relatioron 1 to each agent € {1,...,h}, and
with a truth valuationv: Prop — P(W). We always writeR; instead ofR(i) and
define the accessibility relations for mutual and commonatedge in the standard
way: Rg := Ry U---U Ry andRc ==, -, (Re)".

An evidence functiolf: W x Tm — P (FmLpi) determines the formulae evi-

denced by a term at a world. We defifig := £ | (W x Tmg). Note that whenever
A € Eg(w,t), it follows thatt € Tmg. The evidence functiofi must satisfy the
following closure conditions: for any worlds, v € W,
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1. & (w,t) C E.(v,t) whenevelw,v) € R.; (monotonicity
2. if [(JeA € CS, thenA € Eg(w, ¢); (constant specification
3. if (A— B) € & (w,t)andA € E.(w, s), thenB € &, (w,t-s);  (application
4. E(w, s) U E(w,t) C Eu(w, s +1t); (sum
5. if A € & (w,t), then[t]; A € & (w,t); (inspection
6. ifAe&(w,t;)forall 1 <i<h,thend € E(w, (t1,...,tn)); (tupling)
7. if A € & (w,t), thenA € &;(w, m;t); (projection
8. if A € Ec(w,t), thenA € Ee(w, ccly(t)) and[t]cA € Ee(w, ccla(t)); (co-closure
9. if A € & (w,s)and (A — [s]eA) € Ec(w,t),

thenA € Ec(w,ind(t, s)). (induction

When the model is clear from the context, we will directlyenefo R4, ..., Ry,

RE, Rc, 51, c. ,5}“ 5E, 5(:, W, andv.

DEFINITION 10. —A ternary relationM, w I- A for formula A being satisfied at a
world w € W in a modelM = (W, R, £, v) is defined by induction on the structure
of the formulaA:

1. M,wl+ P, ifand only ifw € v(P,);
2. I behaves classically with respect to the propositional emtives;
3. M,w Ik [t]gA if and only if

1) A€ &g(w,t)and
2) M,v - Aforall v € W with (w,v) € Rg.

We write M |- Aif M, w IF Aforall w e W. We writeM, w IF A for A C Fmypc
if M,w I Aforall A e A. We writel-¢cs A and say that formul& is valid with
respect td’S if M IF A for all epistemic modeld1 meetingCS.

LEMMA 11 (SOUNDNESY. — All theorems are validt-¢cs A impliesikes A.

PROOF — LetM = (W, R,&,v) be a model meetingS and letw € W. We
show soundness by induction on the derivationdof The cases for propositional
tautologies, for the application, sum, reflexivity, andpestion axioms, and for the
modus ponens rule are the same as for the single-agent gé&stiirg, 2005) and are,
therefore, omitted. We show the remaining five cases:

(tupling) AssumeM,w I+ [t;];Aforall1 < i < h. Thenforalll < i < h,
we have 1)M,v |- A whenever(w,v) € R; and 2)A € &;(w,t;). By the
tupling closure condition, it follows from 2) that € Eg(w, (t1,...,t)). Since
Re = U?Zl R; by definition, it follows from 1) thatM,v I A whenever

(w,v) € Rg. Hence M, w IF [(t1, ..., th)]eA.
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(projection) AssumeM,w IF [tJeA. Then 1)M,v Ik A whenever(w,v) € Rg
and 2)A € & (w,t). By the projection closure condition, it follows from 2)
thatA € &;(w,m;t). In addition, sinceRg = Ule R;, it follows from 1) that
M, v IF Awhenevel(w,v) € R;. Thus, M, w Ik [m;t]; A.

(co-closure) AssumeM, w I [t]cA. Then 1)M, v I+ A whenever(w, v) € R¢ and
2) A € &c(w,t). It follows from 1) thatM, v’ I A whenever{w,v') € Rg
sinceRe C Rc; also, due to the monotonicity closure conditigel, v” I- [t]c A
sinceRego Rc C Rc. By the co-closure closure condition, it follows from 2) tha
A € Ee(w,ccli(t)) and[t]cA € Ee(w,ccla(t)). Hence M, w I [ccli(t)]eA
and M, w I [cclz()]e [t]c A.

(induction) AssumeM,w IF A and M,w I+ [t]c(A — [s]eA). From the sec-
ond assumption and the reflexivity &, we getM,w IF A — [s]gA; thus,
M, w IF [s]eA by the first assumption. Sd € &e(w, s) and, by the second
assumptionA — [s]JeA € Ec(w,t). By the induction closure condition, we
haveA € Ec(w,ind(t, s)). To show thatM, v I A whenevel(w, v) € Rc, we
prove thatM, v IF A whenever{w,v) € (Rg)™ by induction on the positive
integern.

Thebase case: = 1 immediately follows fromM, w IF [s]g A.

Induction step. If (w,v) € (Rg)"!, there must exist’ € W such that
(w,v") € (Rg)™ and(v’,v) € Re. By induction hypothesisM, v I A. Since
M, w - [tlc(A — [s]eA), we getM, v’ IF A — [s]gA. Thus, M, o' I [s]gA,

which yieldsM, v IF A.

Finally, we conclude thatM, w IF [ind(¢, s)]c A.

(axiom necessitation)Let [c]g A € CS. SinceA must be an axiomM, w I+ A for
all w € W, as shown above. Sinck! is a model meetingS, we also have
A € Eg(w,c) for all w € W by the constant specification closure condition.
Thus, M, w I [c]g A forallw € . [ |

DEFINITION 12. —Let CS be a constant specification. A sét of formulae is
called CS-consistenif ® Fqs ¢ for some formulap. A set® is called maximal
CS-consistentf it is CS-consistent and has naS-consistent proper extensions.

Whenever safe, we do not mention the constant specificatidroaly talk about
consistent and maximal consistent sets. It can be easilyrstimt maximal consistent
sets contain all axioms &fP$ and are closed under modus ponens.

DEFINITION 13. —For a set® of formulae, we define

®/®:={A : thereis a € Tmg such that[t]g 4 € O} .

DEFINITION 14. —LetCS be a constant specification. Tlwanonical (epistemic)
modelM = (W, R, £, v) meetingCS is defined as follows:



12 JANCL - -/2011. Logical Aspects of Multi-Agent Systems

1. W:i={wcC Fmpe : wis a maximalCS-consistent sét
2. R :={(w,v) e WxW : w/i Cu};

3. Eg(w,t) :={A€Fmpc : [t]pgA € wh;

4. v(P,) ={weW : P, € w}.

LEMMA 15. — Let(CS be a constant specification. The canonical epistemic model
meetingCS is an epistemic model meetidg.

PROOF — The proof of the reflexivity and transitivity of eadk;, as well as the

argument for the constant specification, application, samd,inspection closure con-
ditions, is the same as in the single-agent case (see (fi2B05)). We show the
remaining five closure conditions:

(tupling) AssumeA € &;(w,t;) forall 1 < ¢ < h. By definition of £;, we have
[t:]:A € wforall 1 < i < h. Therefore, by the tupling axiom and maximal
consistencyj(t1, . .., tn)|eA € w. Thus,A € Ee(w, (t1,...,tn)).

(projection) AssumeA € Eg(w, t). By definition ofEg, we havelt]e A € w. There-
fore, by the projection axiom and maximal consisterieyt];A € w. Thus,
A€ &-(w,mt).

(co-closure) AssumeA € Ec(w, t). By definition ofc, we havelt]c A € w. There-
fore, by the co-closure axioms and maximal consistefeel; (¢)]eA € w and
[ccla(®)]e [t]cA € w. Thus,A € Ee(w, ccly(t)) and[t]cA € Ee(w, ccla(t)).

(induction) AssumeA € Ee(w, s) and(A — [s]gA) € Ec(w, t). By definition of g
and&c, we haveslgA € w and[t]c(A — [s]eA) € w. Frombes [s]eA — A
(Lemma 1.1) and the induction axiom, it follows by maximahsistency that
A € wand[ind(t, s)]cA € w. Therefore A € Ec(w,ind(t, s)).

(monotonicity) We show only the case ef= C since the other cases are the same as
in (Fitting, 2005). It is sufficient to prove by induction dmet positive integen
that
if [tj]cA € wand(w,v) € (Re)", thenftjcAecwv . (7

Base caser = 1. Assumew, v) € Rg: i.e,w/i C v forsomei. As[t]cA € w,
[miccla(t)]s [t]lcA € w by maximal consistency, and hengk A € w/i C v.
The argument for thanduction stepis similar.

Now assumegw,v) € Rc = |J,—;(Re)" andA € Ec(w,t). By definition
of &c, we havet]cA € w. As shown abovef]cA € v. Thus,A € Ec(v,t). B

REMARK 16. — LetR¢ denote the binary relation di defined by
(w,v) € R ifandonlyif w/CCuwv .

An argument similar to the one just used for monotonicityvehdhat Rc C Re.
However, forh > 1 the converse does not hold for any homogenésagiomatically
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appropriate constant specificatiés, which we demonstrate by adapting an example
from (Meyeret al,, 1995). For a fixed propositional variahl® let

O = {[Sn]E[Sl]EP :n>1, 81,...,Sn€TmE}U{ﬁ[ﬁ]CP : ﬁETmc} .

This set isCS-consistent for any’ € Prop.

To prove this, lett’ C ® be finite and letn denote the largest nonnegative integer
such thafs,,]e ... [s1]e P € ®' for somesy,...,s,, € Tmg (in particular,;m = 0 if
no such terms exist). Define the modél:= (N, RV, &V, V) by

e RN :={(n,n+1)eN? : n mod h=i}U{(n,n) : n €N},
o E¥(n,s) := Fmypc foralln € N and all terms; € Tm;
e vN(P;):={1,2,...,m+ 1} forall P; € Prop.

Clearly, N' meets any constant specification; in particular, it meetggitienCS. For
h > 1, it can also be easily verified thaf, 1 I ®’; therefore®’ is CS-consistent.

Since® is CS-consistent, there exists a maxindaf-consistent sei O ®. Let us
show that the se¥ := {—P} U (w/C) is alsoCS-consistent. Indeed, if it were not the
case, there would exist formul&g|c By, . . ., [tn]c B, € w such that

Fes By — (B — -+ — (B, — P)...) .
Then, by Corollary 6, there would exist a teene Tm¢ such that
Fes [slc(Br— (B — -+ — (B, — P)...)) .

But this would imply[(...(s-t1) - tn—1) - tu]cP € w—a contradiction with the
consistency ofv.

Since V¥ is alsoCS-consistent, there exists a maxinta$-consistent set O V.
Clearly,w/C C v: i.e, (w,v) € R¢. But(w,v) ¢ Rc because this would imply
P € v, which would contradict the consistencyoflt follows thatRc C Re..

Similarly, we can define?¢ by (w,v) € Rg if and only if w/E C v. However,
Rt = Rg for any C-axiomatically appropriate constant specificati@f. Indeed, it
is easy to show thaRe C Rg. For the converse direction, assue, v) ¢ R,
then(w,v) ¢ R; foranyl < i < h. So there are formulad,, ..., A, such that
[t;]:A; € wforsomet; € Tm;, butA; ¢ v. Now let[¢;]c(A; — A1 V---VA) €CS
for constants:, ..., c,. Then[| ¢ - t;]i(A1 V-V Ay) € wforalll <i < h, so
[(Lier -ty .. L nen - th)]e(A1V---VAy) € w. HoweverA; ¢ vforanyl < i < h;
therefore, by the maximal consistencyofd; v- - -V A; ¢ v either. Hencew/E ¢ v,
so(w,v) ¢ Rg. O

LEMMA 17 (TRUTH LEMMA). — LetCS be a constant specification aod be the
canonical epistemic model meeti@g. For all formulae A and all worldsw € W,

Acwifandonlyif M,wlF A .
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PROOF — The proof is by induction on the structure df The cases for proposi-
tional variables and propositional connectives are imatediy definition oft- and by
the maximal consistency af. We check the remaining cases:

CaseA is [t]; B. AssumeA € w. ThenB € w/i andB € &;(w,t). Consider any
such thatw, v) € R;. Sincew/i C v, it follows thatB € v, and thus, by induction
hypothesisM, v I B. It immediately follows that\, w I+ A.

For the converse, assumd, w I+ [t]; B. By definition ofl-, we getB € &;(w, t),
from which|[¢t]; B € w immediately follows by definition of;.

CaseA is [t|eB. AssumeA € w and consider any such that(w,v) € Rg. Then
(w,v) € R; for somel < i < h: i.e, w/i C v. By definition of &g, we have
B € &(w,t). By the maximal consistency a#, it follows that[r;t];B € w, and
thusB € w/i¢ C v. Since by induction hypothesid/, v I+ B, we can conclude that
M, w |- A. The argument for the converse repeats the one from thequeease.

Case A is [t]cB. AssumeA € w and consider any such that(w,v) € Rc:
i.e, (w,v) € (Rg)" for somen > 1. As in the previous case®} € &c(w,t) by
definition of&c. It follows from (7) in the proof of Lemma 15 that € v, and thus, by
C-reflexivity and maximal consistency, aléd € v. Hence, by induction hypothesis,
M,v I+ B. Now M, w I A immediately follows. The argument for the converse
repeats the one from the previous cases. |

Note that, unlike the converse directions in the proof abdie corresponding
proofs in the modal case are far from trivial and require tdldal work (seee.g.
(Meyeret al, 1995)). The last case, in particular, usually requiresarsophisticated
methods that would guarantee the finiteness of the moded.slinplification of proofs
in justification logics is yet another benefit of using termstéad of modalities.

THEOREM 18 (COMPLETENESY. — LP$(CS) is sound and complete with respect
to the class of epistemic models meetid) i.e., for all formulaeA € Fmpc,

Fes Aifandonlyif IFes A .

PROOF — Soundness was already shown in Lemma 11. For completdeess be
the canonical model meetiS and assumgcs A. Then{—A} isCS-consistentand
hence is contained in some maxindaf-consistent sety € W. So, by Lemma 17,
M, w IF =A, and hence, by Lemma 18,5 A. [ |

In the case ol P, the finite model property can be demonstrated by restgdtie
class of epistemic models to the so-called M-models, intced by Mkrtychev in
(Mkrtychev, 1997). We will now adapt M-models to our logicdaprove the finite
model property for it.

DEFINITION 19. —AnM-modelis a singleton epistemic model.
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THEOREM 20 (COMPLETENESS WITH RESPECT TOM-MODELS). — LP$(CS) is
also sound and complete with respect to the class of M-maoadedsingCS.

PROOF — Soundness follows immediately from Lemma 11. Now asskne A,
then{—-A} is CS-consistent, and hencet, w, IF —A for some worldw, € W in the
canonical epistemic modglt = (W, R, £, v) meetingCS.

Let M’ = (W', R, &' V') be the restriction ofM to {wo}: i.e, W' = {wp},
R := {(wo,wp)} forall, &' := & | (W' x Tm), andv/'(P,,) := v(P,) N W’'.

Since M’ is clearly an M-model meetingS, it only remains to demonstrate that
M’ wq IF Bifand only if M, wq I B for all formulaeB. We proceed by induction
on the structure of3. The cases where eithé? is a propositional variable or its
primary connective is propositional are trivial. Therefpwe only show the case of
B = [t]C. First, observe that

M, wy I [t]eC ifand only if C' € & (wo, t) . (8)
Indeed, by Lemma 17\, wy IF [t]eC if and only if [t] C' € wy, which, by definition
of the canonical epistemic model, is equivalen€te Eg (wo,t) = £5 (wo, t).

If M,wp IF [t]eC, thenM, wy I+ C sinceRg is reflexive. By induction hypoth-
esis,M’, wg I- C. By (8) we haveC' € & (wo, t), and thusM’, wq I [t]e C.

If M, wo I [t]eC, then by (8) we hav€' ¢ £ (wo, 1), SOM', wo ¥ [t]eC. N

COROLLARY 21 (ANITE MODEL PROPERTY). — LP$(CS) enjoys the finite model
property with respect to epistemic models.

REMARK 22. — Note that, in the case &P (CS), the finite model property does
not imply that common knowledge can be deduced from suffilsienany approxi-
mants, unlike in the modal case. This is an immediate coresempiof the set

O = {[Sn]E[Sl]EP :n>1, 81,...,Sn€TmE}U{ﬁ [ﬁ]cP : ﬁETmc}

being consistent, as shown in Remark 16. In modal logic, asalogous tab can
only be satisfied in infinite models, whereas in our case, dilee evidence function
completely taking over the role of the accessibility relas, there is a singleton M-
model that satisfie®. O

5. Conservativity

We extend the two-agent versit®? of the Logic of Proofs (Yavorskaya (Sidon),
2008) to an arbitrary in the natural way and rename it in accordance with our naming
scheme:

DEFINITION 23. —The language of P;, is obtained from that of_P% by restricting
the set of operations tq, +;, and!; and by dropping all terms fromfimg and Tmc.
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The axioms are restricted to application, sum, reflexivatyd inspection for each
The definition of constant specification is changed accagjiglin

We show that P§ is conservative overP), by adapting the technique from (Fitting,
2008), for which evidence terms are essential.

DEFINITION 24. —The mapping : FmLPi — Fmyp, is defined as follows:
1. P* := P, for propositional variables?,, € Prop
2. x commutes with propositional connectives;

A% if t contains a subterma € Tmg U Tmc,
[tl@ A* otherwise.

3. ([lad)* == {

THEOREM25. —Let(CS be a constant specification fang. For an arbitrary for-
mulaA € Fmpp, ,

if LPS(CS)F A,  then LP,(CS*)F A,

whereCS™ = {[c|; E* : [c|;F € CS}.

PROOF — Sinced” = Aforany A € Fmyp, , it suffices to demonstrate that for any
formulaD € Fmypc, if LP};(CS) + D, thenLP,(CS*) - D*, which can be done by
induction on the derivation ab.

CasewhenD is a propositional tautology. Then solis*.

CasewhenD = [t|;B — B is an instance of the reflexivity axiom. Thén* is either
the propositional tautologig* — B> or[t];B* — B*, an instance of the reflexivity
axiom ofLLPy,.

CasewhenD = [t|;B — [!t]; [t]; B is an instance of the inspection axiom. Then
D* is either the propositional tautology* — B> or [t|,B* — [!t]; [t]|;B*, an
instance of the inspection axiom bP,.

CasewhenD = [t].(B — C) — ([s].B — [t - s].C) is aninstance of the application
axiom. We distinguish the following possibilities:

1. Botht ands contain a subterm from Tgu Tme. In this subcase)* has the form
(B* — C*) — (B* — C*), which is a propositional tautology and, thus, an
axiom ofLPy,.

2. Neithert nor s contains a subterm from TgU Tmc. ThenD* is an instance of
the application axiom ofPy,.

3. Termt contains a subterm from TgU Tmc while s does not. Ther* has the
form (B* — C*) — ([s];B* — C*), which can be derived ibP;(CS*) from
the reflexivity axiom[s];B* — B* by propositional reasoning. In this subcase,
translationx does not map an axiom leﬁ to an axiom ofLPy,.
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4. Terms contains a subterm from TgmU Tmc¢ while ¢ does not. ThenD* is
[t]i(B* — C*) — (B* — C*), an instance of the reflexivity axiom aP},.

CasewhenD = [t].B V [s].B — [t+ s|.B is an instance of the sum axiom. We
distinguish the following possibilities:

1. Botht ands contain a subterm from TguU Tmc. In this subcase)* has the form
B* Vv B* — B*, which is a propositional tautology and, thus, an axiorh®f.

2. Neithert nor s contains a subterm from Tgu Tmc. ThenD* is an instance of
the sum axiom of Py,.

3. Termt¢ contains a subterm from TgU Tmce while s does not. TherD* has the
form B> Vv [s]; B* — B*, which can be derived ibP, (CS™) from the reflexivity
axiom[s];B* — B> by propositional reasoning. This is another subcase when
translationx does not map an axiom aP$ to an axiom ofLP;,.

4. Terms contains a subterm from Tgru Tmc while ¢ does not. TheD”* has the
form [t];B* vV B* — B*, which can be derived ibP; (CS™) from the reflexivity
axiom[t|;B* — B> by propositional reasoning. This is another subcase when
translationx does not map an axiom &P to an axiom ofLP;,.

CasewhenD = [t1]1BA---Atp]nB — [{t1, ..., tn)]eBis an instance of the tupling
axiom. We distinguish the following possibilities:

1. Atleast one of the;’s contains a subterm from T Tmc. ThenD* has the form
Ci N---ACy — B* with at least on€; = B> and is, therefore, a propositional
tautology.

2. None of thet;’s contains a subterm from TgrJ Tmc. Then D> has the form
[t1]1B* A -+ A [tn]nB* — B>, which can be derived ihP,(CS*) from the
reflexivity axiom. This is another subcase when translatiodoes not map an
axiom of LP$ to an axiom ofLPy,.

CasewhenD is an instance of the projection axioie B — [r;t|; B or of the co-
closure axiomi.e,, [t]c B — [ccly (t)]e B or [t]c B — [ccla(t)]e [t]cB. ThenD* is the
propositional tautology3* — B*.

CasewhenD = BA[t]c(B — [s]eB) — [ind(¢, s)]c B is an instance of the induction
axiom. ThenD* is the propositional tautologg* A (B* — B*) — B*.

CasewhenD is derived by modus ponens is trivial.

CasewhenD is [c]gB € CS. ThenD* is eitherB* or [c]; B*. In the former case,

B* is derivable inLP, (CS™), as shown above, becauBds an axiom ofLP¢; in the
latter case|c]; B> € CS™. [ ]

REMARK 26. — Note thatCS™ need not, in general, be a constant specification
for LP,, because, as noted above, for an axibnof LPS, its imageD* is not al-
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ways an axiom oLP;. To ensure thalS™ is a proper constant specification, all
formulae of the forms

(A— B) — ([siA— B) , AVI[siA— A,
[tl]lA/\"'/\[th]hAﬂA y [t]ZA\/AHA
have to be made axioms bP;,. Another option is to use Fitting’s concept@ibed-

dingone justification logic into another, which involves repragconstants i) with
more complicated terms iP* (see (Fitting, 2008) for details). O

6. Forgetful projection and a word on realization

Most justification logics are introduced as explicit couptgts to particular modal
logics in the strict sense described in Sect. 1. Althoughehtzation theorem fdrP§

remains an open problem, in this section we prove that eadrém of our Iogi¢P2
states a valid modal fact if all the terms are replaced wigtthrresponding modalities,
which is one direction of the realization theorem. We alszdss approaches to the
more difficult opposite direction.

In the modal language of common knowledge, modal formulaalafined by the
grammar

A:=P; | -A|(ANA) | (AVA)|(A— A)|0;A|EA|CA ,

whereP; € Prop. The set of all modal formulae is denoted byslfgn The Hilbert

systemS4§ (Meyeret al, 1995) is given by the modal axioms 8# for individual
agents, by the necessitation rule foy, . . ., J,, andC, by modus ponens, and by the
axioms

C(A— B) — (CA — (CB), CA — A, EA— AN~ ANORA,
ANC(A—EA) — CA, CA — E(ANCA).

DEFINITION 27 (FORGETFUL PROJECTION. — The mapping: Fmpc — Fmg,c
is defined as follows:

1. P? := P; for propositional variables®; € Prop
2. o commutes with propositional connectives;
3. ([t]iA)° =A%

4. ([tleA)° := EA°;

5. ([t]cA)° := CA°.
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LEmMMA 28. — LetCS be a constant specification. For any formulac Fmpe, if
LP$(CS) I A, thenS4§ - A°.

PrROOF — The proof is by an easy induction on the derivatioriof |

DEFINITION 29 (REALIZATION). — Arealization is a mapping: Fms4% — FmLP%
such that(r(A))° = A. We usually writed” instead of(A).

We can think of a realization as a function that replaces weoges of modal
operators (includind: and C) with evidence terms of the corresponding type. The
problem of realization for a given homogenediiaxiomatically appropriate constant
specificatiorCS can be formulated as follows:

Is there a realization such that.P$ (CS) - A" for any theoren of 5457

A positive answer to this question would constitute the ntbffecult direction of the
realization theorem, which is often demonstrated by me&irglaction on a cut-free
sequent proof of the modal formula.

The cut-free systems fd‘f4§ presented in (Alberucat al, 2005) and (Brinnler
et al, 2009) are based on an infinitavyrule of the form

EmA, T forallm>1
CA,T

(w).

However, realizing such a rule presents a serious challeagguse it requires achiev-
ing uniformity among the realizations of the approximasitsA.

Finitizing this w-rule via the finite model property, Jaget al. obtain a finitary
cut-free system (Jaget al, 2007). Unfortunately, the “somewhat unusual” structural
properties of the resulting system (see discussion in (Xig#. 2007)) make it hard
to use it for realization.

The non-constructive, semantic realization method froittilg, 2005) cannot be
applied directly because of the non-standard behavior @fcémonical model (see
Remark 16).

Perhaps the infinitary system presented in (Buaktedil., 2010b), which is finitely
branching but admits infinite branches, can help in provirgrealization theorem
for LP%. For now this remains work in progress.

7. Coordinated attack

To illustrate our logic, we will now analyze the coordinatgthck problem along
the lines of (Fagiret al, 1995), where additional references can be found. Let us
briefly recall this classical problem. Suppose two divisiai an army, located in
different places, are about to attack their enemy. They bamge means of communi-
cation, but these may be unreliable, and the only way to sezwictory is to attack
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simultaneously. How should generélsand H who command the two divisions coor-
dinate their attacks? Of course, geneFatould send a messageS’ with the time of
attack to generali. Let us use the propositiatel to denote the fact that the message
with the time of attack has been delivered. If the generak tthe authenticity of the
message, say because of a sighature, the message itse#f taleeh as evidence that
it has been delivered. So genefa) upon receiving the message, knows the time of
attack:i.e, [m{’]  del However, since communication is unreliabiéconsiders it
possible that his message has not been delivered. But ifgieiiesends an acknowl-
edgmentnl’, he in turn cannot be sure whether the acknowledgment hekedé&,
which prompts yet another acknowledgmetff by generatz, and so on.

In fact, common knowledge afel is a necessary condition for the attack. Indeed,
it is reasonable to assume it to be common knowledge betvheegenerals that they
should only attack simultaneously or not attack atiadl, that they attack only if both
know that they attackit]c(att — [s]e att) for some termss and¢. Thus, by the
induction axiom, we geatt — [ind(¢, s)]c att. Another reasonable assumption is that
it is common knowledge that neither general attacks unkesaiessage with the time
of attack has been deliverefl]c(att — del) for some termr. Using the application
axiom, we obtairatt — [r - ind(¢, s)]c del

We now show that common knowledge @él cannot be achieved and that con-
sequently no attack will take place, no matter how many ngessand acknowledg-
mentsm{, mi ,m$ ... are sent by the generals, even if all the messages are suc-
cessfully delivered.

In the classical modeling without evidence, the reasonasttie sender of the last
message always considers the possibility that his lastagessaynZi , has not been
delivered. To give a flavor of the argument carried out in illetgFaginet al., 1995),
we provide a countermodel whene!! is the last message, it has been delivered, but
H is unsure of thati.e.,

[m{'] i del, (mi] e [mf]y del but  —[sly [md']c [mf]y del

for all termss. Consider any modeM whereW := {0, 1, 2, 3}, v(del) := {0, 1, 2},
R is the reflexive closure of(1,2)}, Ry is the reflexive closure of(0,1), (2, 3)}.
The only requirements on the evidence funcoare to satisfylel € £; (0, m{') and
[m{] g del € &g (0,mi"). Whateve€ is, we haveM, 0 ¥ [s]y [mi] ¢ [m§] i del
andM, 0 ¥ [t]c delfor any s andt becauseM, 3 ¥ del.

Let us investigate a different scenario. In our models wildence terms, there is
an alternative possibility for the lack of knowledge: infsziént evidence. For exam-
ple, G may receive the acknowledgment! but may not consider it to be evidence
for [mﬂ g delbecause the signature Bf is missing. We now demonstrate that com-
mon knowledge of the time of attack cannot emerge, basingrthenent solely on the
lack of common knowledge evidence, in contrast to the aassipproach. Consider
the M-modelM = (W, R, £, v) obtained as followsW := {w}, R; := {(w,w)},
v(del) := {w}, and¢ is the minimal evidence function such thiel € £y (w, m§)
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and [m{| y del € & (w,mi’). In this model, M, w ¥ [t]c del for any evidence
termt becausalel ¢ Ec(w,t) for anyt. To prove the latter statement, it is sufficient
to note that for any term by Lemma 28,

¥ [m§] u deln [mi] g [mS] i del — [t]c del )

because
S45 ¥ Oy del A OgOyy del — Cdel

which is easy to demonstrate. L#t°@" be the canonical epistemic model meeting
the empty constant specification afid" be its evidence function. Since the negation
of the formula from (9) must be satisfiable, for eadhere is a worldy; from A"
such thatdel € £5"(w;, mf) and [m{] y del € E2"(w;, mi'), but by the Truth
Lemma 17,del ¢ E&%wy,t). SinceE®" | ({w:} x Tm) satisfies all the closure
conditions, the minimality of implies thatCc (w, s) C E&%wy, s) for any terms. In
particulardel ¢ Ec(w,t) for any termt.

8. Discussion

In this paper, we have provided a system of evidence termdefaeribing common
knowledge, which can be used instead of modal logic reptasen. One benefit of
this new representation is that several proofs that ares dusitd in the modal case,
e.g, those of completeness and conservativity, are made éasiar logic. There are
other merits to this system as well.

In the single-agent case, as is pointed out in (Artemov, 2008 explicit codifi-
cation of knowledge by evidence (in Artemov’s case, of thdivildual knowledge of
the agent) enables knowledge to be analyzed and recordedrdiey and subsequent
retrieving of evidence can be viewed as a form of single-agemmunication, with
which any mathematician is familiar. A proof of a theorermdft recorded immedi-
ately, may require as much effort to be restored later asrfipidirequired originally.
This role of evidence terms in knowledge transfer is rencignig of what is calle@x-
plicit knowledgen Knowledge Managemehand is contrasted wittacit knowledge
As described in (Nonaka, 1991), “Explicit knowledge is falrand systematic. For
this reason, it can be easily communicated and shared, duptspecifications or a
scientific formula or a computer program.” In this sensegerce terms in the single-
agent case serve as a kind of explicit knowledge. Indeed, &ggent can find a proof
he/she wrote down a year ago, it will restore his/her knogdeaf the statement of the
theorem.

The situation with common knowledge evidence is more corapid. An evi-
dence of common knowledge of some facteven when transmitted to all agents and

3. The term “explicit knowledge” sounds so natural that it feeen used in different areas
with completely different meanings. For instance, in epist logic, explicit knowledge is a
type of knowledge that is not logically omniscient, as ogabt implicit knowledge (Fagiet
al., 1995).
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received by therh does not generally create common knowledgeldbr the same
reasons that were discussed in the previous section. Irtif@ce exist general results
about the impossibility of achieving common knowledge \@aain modes of commu-
nication, e.g., in asynchronous systems (Fagial, 1995). Clearly, an introduction
of evidence terms cannot and should not change this gertezabpenon.

However, there exist modes of communication that ensutettransmission of a
common knowledge evidence term to all the agents in the gidoep create common
knowledge among the agents. A prime example of such a modéésurse, public
announcements, a well-known method of creating common letdye. Thus, one
of the benefits of our system of terms is a finite encoding of mom knowledge,
which is largely infinitary in nature. This finite encodingedates to transmit evidence,
which, under certain modes of communication, creates camknowledge among the
agents. Of course, common knowledge can also be createdudylia agnnouncement
of the fact itself rather than of evidence in support of the.fa here is an important
difference, however. When, in his seminal 1989 work (Pl2287), Plaza analyzed
one of the standard stories used to explain the concept ommmknowledge, the
Muddy Children Puzzle, in order to explain how common knalgke is created by a
public announcement, he had to assume that the announcearerttuthful and the
agents are trustful. Indeed, an announced fact cannot lecommon knowledge,
or any kind of knowledge, if the fact is false. And clearlytlie agents do not trust
the announcement, their knowledge would only change pealvibey can verify the
announced facts.

Verifiability of announcements is exactly what we achievétisoducing evidence
terms into the language. An agent who receives a justifiedto A needs neither to
assume thatl is true nor to trust the speaker because the agent can sirapfy the
received information. A similar idea of supplying messagés justifications can
be used to describe a distributed system that authorizedigharsement of sensitive
data, such as medical records, while maintaining a spegfieecy policy (Blasst
al., 2011). Interestingly, like in our analysis of the coordewattack, the authors also
propose to use the sender’s signature as evidence for themiafion about his/her
intentions or policies.

Verifiability of evidence turns out to be sufficient for crie@tcommon knowledge.
Indeed, Yavorskaya considered a situation where agentser#fy each other’s evi-
dence:[t];A — [!{t}j [t]: A for i # j (Yavorskaya (Sidon), 2008). THg-operation
implicitly presumes communication sinés evidence: has to be somehow available
to agent;j. Itis not hard to show that an addition of this operation to logic leads
to a situation where any individual knowledge also autocadiii creates common
knowledge of the same fact: for any tetne Tm;, there is a termy(z) € Tmc such
that- [t];A — [s(t)]cA. However, the mode of communication necessary for the

4. Unreliable communication does not prevent knowledgenflieing explicit. Thus, in the
context of explicit vs. tacit knowledge, we only discuss tisefulness of evidence terms that
have been received by the agent(s).
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!{—operation to work must be reliable and immediate, whiclriets the applicability
of such a logic; for instance, it precludes an analysis ohelsyonous systems. In
summary, the kind of knowledge that can be induced via jaatifbn transmission is
generally the same as in the case of statement transmissiotegends primarily on
the mode of communication, on its reliability.

So another benefit of introducing evidence terms is theiifigbility, including
cases when evidence terms are communicated between ayen@nother benefit,
this time on the meta-logical level, is an ability to analgpenmon knowledge and the
process of its creation. Similar to Artemov’s analysis @& tamous Gettier examples
in (Artemov, 2008), the system of evidence terms for comnmmovkedge can also be
used to uncover hidden assumptions. Further, as shown prév@us section, it can
yield new scenarios for well-known epistemic puzzles.

Our contribution in this paper is technical in the senseweaim to study neither
the nature of common knowledge nor ways of transmitting datachieve it. Our
goal is to provide tools for analyzing the fine structure ofoaon knowledge, tools
that can be used, irrespective of the mode of communicagbmeen the agents, even
when the communication itself remains on the meta-logieatll as in the standard
rendition of the Muddy Children Puzzle, e.g., in (Fagtral,, 1995).

9. Conclusions

We have presented a justification IongE with common knowledge, which is a
conservative extension of the multi-agent justificatiogitoLP;. The major open
problem at the moment remains proving the realization #m@orone direction of
which we have demonstrated.

Our analysis of the coordinated attack problem in the IagguuiLP% shows that
access to evidence creates more alternatives than thécalasedal approach. In
particular, the lack of knowledge can occur either becausssages are not delivered
or because evidence of authenticity is missing.

We have mostly concentrated on the stud¢ efxiomatically appropriate constant
specifications. For modeling distributed systems withed@ht reasoning capabilities
of agents, it is also interesting to consideaxiomatic appropriate;-axiomatic ap-
propriate, and heterogeneous constant specifications,ewdmdy certain aspects of
reasoning are common knowledge.

We established soundness and completeness with respgisteneic models and
singleton M-models. The question remains whether otheaséos for justification
logics such as (arithmetical) provability semantics (Arty, 1995; Artemov, 2001)
and game semantics (Renne, 2009b) can be adapldéihcto Further avenues of re-
search include but are not limited to the decidabilityL@I%, the comparison of its
complexity to that 01542, and the extension of our treatment of common knowledge
to the logics with the individual modalities of typé K5, etc.
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A long-term goal of our research is to find justification carparts of dynamic
epistemic logics with common knowledge. A step in this di@t (although still
without common knowledge) was made in (Buchetlial, 2010a) by proposing a
justification counterpart to public announcement logieatly, both types of systems,
explicit counterparts to common knowledge logics and toadyic epistemic logics,
will have to be studied on their own first, before being conallin
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