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Abstract

This note provides an overview on my PhD work on explicit math-
ematics and applicative theories.

1 Object-oriented programming

The aim in this part is to give an interpretation of Java in explicit math-
ematics. In A semantics for λ

{}
str: a calculus with overloading and

late-binding [7] and Explicit mathematics: power types and over-
loading [8], we develop type systems for overloading in late-binding in ex-
plicit mathematics.

In order to establish properties of recursive programs within theories of
explicit mathematics, a least fixed point combinator is needed. We introduce
a combinator if this kind in Formalizing non-termination of recursive
programs [4].

Finally, in Constructive foundations for Featherweight Java [6] we
present a model of (a fragment of) Java in a system of explicit mathematics.

2 Universes and induction principles

In Extending the system T0 of explicit mathematics: the limit and
Mahlo axioms [2], we present models for systems of explicit mathematics
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with limit and Mahlo axioms, thus providing proof-theoretic upper bounds
for them.

The basic properties for universes in explicit mathematics are studied
in Universes in explicit mathematics [1]. There, we also introduce the
principle of name induction to define least universes.

In A theory of explicit mathematics equivalent to ID1 [3], we show
that name induction can be used to give a system of explicit mathematics
that is proof-theoretically equivalent to the system of non-iterated positive
arithmetical inductive definitions.

3 Combinatory logic

How to normalize the jay [5] is a small paper that provides a normaliza-
tion proof for the J-combinator.
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