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Abstract

We observe that justification logic enjoys a form the strong finite model
property (sometimes also called small model property). Thus we obtain
decidability proofs for justification logic that do not rely on Post’s theo-
rem.

1 Introduction

Justification logics [4] are a family of logics that that, like modal logics, can
express knowledge or provability of propositions. However, instead of an implicit
�-operator justification logics include explicit modalities of the form t : where t
is a term representing a reason for an agent’s knowledge or a proof a proposition.

Artemov developed the first justification logic [1, 2] to provide intuition-
istic logic with a classical provability semantics. Later Fitting [9] introduced
epistemic models for justification logic. In this semantics, justification terms
represent evidence a very general sense. For instance, our belief in A may be
justified by direct observation of A or by learning that a friend heard about A.
This general reading of justification led to a big variety of epistemic justification
logics for many different applications [3, 6, 7, 10, 12, 13].

There are many known decidability results for justification logics, see, for
instance, [8, 11, 16]. However, many of these decidability proofs rely on com-
pleteness with respect to a recursively enumerable class of models and Post’s
theorem [15].

In the present note we show that justification logic enjoys a form of the strong
finite model property (which sometimes is called small model property) [5].
Thus we obtain decidability proofs for justification logics that do not make use
of Post’s theorem.

This note makes heavy use of [7].

2 Justification Logics

Justification terms are built from countably many constants ci and countably
many variables xi according to the following grammar:

t ::= ci | xi | (t · t) | (t+ t) | !t .

We denote the set of terms by Tm. Formulae are built from countably many
atomic propositions pi according to the following grammar:

F ::= pi | ¬F | (F → F ) | t : F .
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Prop denotes the set of atomic propositions and Fm denotes the set of formulae.
The axioms of JCS consist of all instances of the following schemes:

A1 finitely many schemes axiomatizing classical propositional logic

A2 t : (A→ B)→ (s : A→ t · s : B)

A3 t : A ∨ s : A→ t+ s : A

We will consider extension of JCS by the following axioms schemes.

(jd) t : ⊥ → ⊥

(jt) t : A→ A

(j4) t : A→!t : t : A

A constant specification CS for a logic L is any subset

CS ⊆ {c : A | c is a constant and A is an axiom of L}.

A constant specification CS for a logic L is called

1. axiomatically appropriate if for each axiom A of L there is a constant c
such that c : A ∈ CS

2. schematic if for each constant c the set {A | c : A ∈ CS} consists of one or
several (possibly zero) axiom schemes, i.e., every constant justifies certain
axiom schemes.

For a constant specification CS the deductive system JCS is the Hilbert sys-
tem given by the axioms A1–A3 and by the rules modus ponens and axiom
necessitation:

A A→ B
B

(MP) ,
c : A ∈ CS

!! · · ·!︸ ︷︷ ︸
n

c : ! · · ·!︸︷︷︸
n−1

c : · · · :!!c :!c : c : A (AN!) ,

where n ≥ 0. In the presence of the j4 axiom a simplified axiom necessitation
rule can be used:

c : A ∈ CS
c : A

(AN) .

Table 1 defines the various logics we consider. We now present the semantics
for these logics

Definition 1 (Evidence relation). Let (W,R) be a Kripke frame, i.e., W 6= ∅
and R ⊆ W ×W , and CS be a constant specification. An admissible evidence
relation E for a logic LCS is a subset of Tm× Fm×W that satisfies the closure
conditions:

1. if (s,A,w) ∈ E or (t, A,w) ∈ E , then (s+ t, A,w) ∈ E

2. if (s,A→ B,w) ∈ E and (t, A,w) ∈ E , then (s · t, B,w) ∈ E

Depending on whether or not the logic LCS contains the j4 axiom, the evidence
function has to satisfy one of the following two sets of closure conditions. If LCS
does not include the j4 axiom, then the additional requirement is:
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A1 A2 A3 jd jt j4 MP AN! AN
JCS X X X X X
JDCS X X X X X X
JTCS X X X X X X
JD4CS X X X X X X X
J4CS X X X X X X
LPCS X X X X X X X

Table 1: Deductive Systems

3. if c : A ∈ CS and w ∈W , then (!! · · ·!︸ ︷︷ ︸
n

c, ! · · ·!︸︷︷︸
n−1

c : · · · :!!c :!c : c : A,w) ∈ E

If LCS includes the j4 axiom, then the additional requirement is:

4. if c : A ∈ CS and w ∈W , then (c, A,w) ∈ E

5. if (t, A,w) ∈ E , then (!t, t : A,w) ∈ E

6. if (t, A,w) ∈ E and wRv, then (t, A, v) ∈ E

If we drop condition 6, then we say E is a t-evidence relation. Sometimes we
use E(s,A,w) for (s,A,w) ∈ E .

Definition 2 (Evidence bases).

1. An evidence base B is a subset of Tm× Fm×W .

2. An evidence relation E is based on B, if B ⊆ E .

The closure conditions in the definition of admissible evidence function give
rise to a monotone operator. The minimal evidence relation based on B is the
least fixed point of that operator and thus always exists.

Definition 3 (Model). Let CS be a constant specification. A Fitting model for
a logic LCS is a quadruple M = (W,R, E , ν) where

• (W,R) is a Kripke frame such that

– if LCS includes the j4 axiom, then R is transitive;

– if LCS includes the jt axiom, then R is reflexive;

– if LCS includes the jd axiom, then R is serial.

• E is an admissible evidence relation for LCS over the frame (W,R),

• ν : Prop→ P(W ), called a valuation function.

Definition 4 (Satisfaction relation). The relation of formula A being satisfied
in a model M = (W,R, E , ν) at a world w ∈ W is defined by induction on the
structure of A by

• M, w 
 pi if and only if w ∈ ν(pi)

• 
 commutes with Boolean connectives
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• M, w 
 t : B if and only if

1) M, v 
 B for all v ∈W with wRv and

2) (t, B,w) ∈ E

We say a formula A is valid in a model M = (W,R, E , ν) if for all w ∈ W we
haveM, w 
 A. We say a formula A is valid for a logic LCS if for all modelsM
for LCS we have that A is valid in M.

The logics defined above are sound and complete (with a restriction in case
of the logics containing the jd axiom). See [3, 9, 14] for the full proofs of the
following results.

Theorem 5 (Soundness). Let CS be a constant specification. If a formula A is
derivable in a logic LCS, then A is valid for LCS.

Theorem 6 (Completeness). 1. Let CS be a constant specification. If a for-
mula A is not derivable in LCS ∈ {JCS, JTCS, J4CS, LPCS}, then there exists
a model M for LCS with M, w 6
 A for some world w in M.

2. Let CS be an axiomatically appropriate constant specification. If a formula
A is not derivable in LCS ∈ {JDCS, JD4CS}, then there exists a model M
for LCS with M, w 6
 A for some world w in M.

3 The Strong Finite Model Property and De-
cidability

In this section we define and establish the strong finitary model property for
many justification logics. As a corollary we get decidability proofs for these
logics.

Definition 7 (Finitary model). A model M = (W,R, E , ν) is called finitary if

1. W is finite,

2. there exists a finite base B such that E is the minimal evidence relation
based on B, and

3. the set {(w, p) ∈W × Prop | w ∈ ν(p)} is finite.

IfM = (W,R, E , ν) is a finitary model for LCS, then will sometimes specify this
model by the tuple (W,R,B, ν) where B is the finite base for E .

Making use of filtrations for justification logics, we obtain the following the-
orem [8].

Lemma 8 (Completeness w.r.t. finitary models).

1. Let LCS ∈ {JCS, JTCS, J4CS, LPCS} and CS be a constant specification for L.
If a formula A is not derivable in LCS, then there exists a finitary model
M for LCS with M, w 6
 A for some world w in M.

2. Let LCS ∈ {JDCS, JD4CS} and CS be an axiomatically appropriate constant
specification for L. If a formula A is not derivable in LCS, then there exists
a finitary model M for LCS with M, w 6
 A for some world w in M.
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Definition 9.

1. Let A be a formula. We denote the length of A (i.e. the number symbols
in A) by |A|.

2. Let Γ be a set. We denote the cardinality of Γ (i.e. the number of elements
of Γ) by |Γ|.

Definition 10 (Strong finitary model property). A justification logic LCS has
the strong finitary model property if there are computable functions f, g, h such
that for any formula A that is not satisfiable, there exists a finitary model
M = (W,R,B, ν) for LCS with

1. M, w 6
 A for some w ∈W

2. |W | ≤ f(|A|),

3. |B| ≤ g(|A|),

4. |ν| ≤ h(|A|).

Given the proof of Lemma 8 in [8] it is easy to see that we can effectively
compute bounds on the size of the finitary model. Thus we get the strong
finitary model property as a corollary of Lemma 8.

Corollary 11 (Strong finitary model property).

1. Let LCS ∈ {JCS, JTCS, J4CS, LPCS} and CS be a constant specification for L.
Then LCS has the strong finitary model property.

2. Let LCS ∈ {JDCS, JD4CS} and CS be an axiomatically appropriate constant
specification for L. Then LCS has the strong finitary model property.

For a proof of the following lemma see [11, Lemma 4.4.6].

Lemma 12. Let CS be a decidable schematic constant specification and LCS ∈
{JCS, JDCS, JD4CS, JTCS, J4CS, LPCS}. Let M = (W,R, E , ν) be a finitary model
for LCS. Then the relation M, w 
 A between worlds w ∈W and formulae A is
decidable.

Corollary 13 (Decidability).

1. Any justification logic in {JCS, JTCS, J4CS, LPCS} with a decidable schematic
CS is decidable.

2. Any justification logic in {JDCS, JD4CS} with a decidable, schematic and
axiomatically appropriate CS is decidable.

Proof. Let LCS be one of the above justification logics. Given a formula A we
can generate all finitary models M = (W,R,B, ν) for LCS with

1. |W | ≤ f(|A|),

2. |B| ≤ g(|A|),

3. |ν| ≤ h(|A|),
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for the functions f, g, h from Definition 10. Note that we can decide whether
a structure M = (W,R,B, ν) is a model for LCS since the required conditions
on the accessibility relation, some combination of transitivity, reflexivity, and
seriality can be effectively verified.

By Lemma 12 we can decide for each of these finitary models, whether
M, w 
 A for all w ∈W .

Making use of Corollary 11 we know that if A is not LCS-satisfiable, then
the above procedure will generate a finitary model M = (W,R,B, ν) such that
M, w 6
 A for some w ∈W . Therefore, we conclude that satisfiability for LCS is
decidable.

4 Conclusion

We observed that justification logic enjoys a form of the strong finite model
property (sometimes also called small model property). Thus we obtain decid-
ability proofs for justification logics that do not rely on Post’s theorem.
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