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Abstract

In [11], we provided a method for eliminating cuts in non-wellfounded proofs
with a local-progress condition, these being the simplest kind of non-wellfounded
proofs. The method consisted of splitting the proof into nicely behaved fragments.
This paper extends our method to proofs based on simple trace conditions. The
main idea is to split the system with the trace condition into infinitely many local-
progress calculi that together are equivalent to the original trace-based system. This
provides a cut-elimination method using only basic tools of structural proof theory
and corecursion, which is needed due to the non-wellfounded character of proofs.
We will employ the method to obtain syntactic cut-elimination for K+, a system of
modal logic with the master modality.

Introduction

Cut elimination in non-wellfounded/cyclic proof theory is currently an active topic of
research and has been previously addressed by other researchers with different tools. For
example via finite approximations in [1], via cyclic proofs in [2], via multicuts in [3],
via runs in [4], via infinitary rewriting in [6], via ultrametric spaces in [7], [8] and [10],
among others. First proof-theoretic results on establishing weakening admissibility in
cyclic calculi for linear temporal logic can be found in [5]. The richness of methods is
a witness of the hardness of the problem. We believe this hardness arises, among other
things, from two fundamental facts:

1. In principle non-wellfounded proof do not have a notion of height associated to
them. This means that we cannot do recursion over them.

2. Verifying that a tree is a proof in the finitary setting just requires to check a “local”
condition globally, in particular that every node is the conclusion of a rule instance.
In the non-wellfounded setting a global condition on the branches is added, proving
that this condition is preserved after the process of cut elimination is the principal
headache.

∗Research supported by the Swiss National Science Foundation project 200021_214820.
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In [11] we defined a method to establish cut elimination and, more generally, to make
proof translations between local progress sequent calculi. These are sequent calculi al-
lowing non-wellfounded proofs such that any infinite branch goes through some rules
infinitely many times. The method is based in splitting the proof in adequate parts,
each of which being amenable to the methods of recursion or corecursion. We left open
the question whether this method can be employed to provide cut elimination for other
non-wellfounded systems with more complex branch conditions. In this paper we answer
this question positively providing cut elimination for a non-wellfounded system for the
master modality (K+). Our main contribution is a method to split a non-wellfounded
calculus in infinitely many local-progress calculi, i.e., calculi where the global condition
becomes amenable to a proof-theoretic treatment via our previously developed tools.

Cut elimination for K+ was already proven by Shamkanov in [10] by the method of
continuous cut elimination via ultrametric spaces.

0 Preliminaries

Master modality

We use this section to introduce some concepts that are needed for the rest of the paper.

K+ is a modal logic, we will work with its formulation in the modal language with
connectives ⊥,→ and unary modalities □,□+. The operator □+ is what we call the
master modality. We use usual Kripke models for the semantics of this logic. If M =
(W,R, V ) is a Kripke model, then the semantics for box and master formulas is as follows:

M, w ⊨ □ϕ iff for any v such that wRv we have that M, v ⊨ ϕ,

M, w ⊨ □+ϕ iff for any v such that wR+v we have that M, v ⊨ ϕ,

where R+ is the transitive closure of R, i.e. wR+v iff there is a (non-empty) sequence
w0, . . . , wn such that w = w0R · · ·Rwn = v.

Given a multiset of formulas Γ we will write ⊡+Γ to mean Γ,□+Γ.

Definition 1. We define the Hilbert system HK+ as the Hilbert system over the language
of the master modality with axioms:

1. ϕ→ (ψ → ϕ);

2. (ϕ→ (ψ → χ)) → ((ϕ→ ψ) → (ϕ→ χ));

3. ((ϕ→ ⊥) → ⊥) → ϕ;

4. □(ϕ→ ψ) → (□ϕ→ □ψ);

5. □+(ϕ→ ψ) → (□+ϕ→ □+ψ);

6. □+ϕ→ □ϕ;

2



7. □+ϕ→ □□+ϕ;

8. □ϕ→ (□+(ϕ→ □ϕ) → □+ϕ).

And the rules of modus ponens: and necessitation for □+:

ϕ ϕ→ ψ
MP

ψ

ϕ
Nec

□+ϕ

■

As mentioned in [9], HK+ is sound and weakly complete with respect to the K+ semantics.

Shamkanov’s non-wellfounded sequent calculus for K+

In [9] Shamkanov provided a non-wellfounded Gentzen calculus for K+, let us denote it
as G∞K+ and its version with cut as G∞K++Cut. In G∞K+ sequents are ordered pairs
(Γ,∆) where Γ,∆ are finite multisets of formulas. These are usually denoted as Γ ⇒ ∆.
Proofs are non-wellfounded trees, i.e. trees that are allowed to have infinite length paths
from the root (infinite branches). It is easy to show that G∞K+ is sound and that if
HK+ ⊢ ϕ then G∞K+ + Cut ⊢ ⇒ ϕ (by induction in the size of the Hilbert proof and
some inversion principles of G∞K+ + Cut), so G∞K+ + Cut is also weakly complete.
Then soundness of G∞K+ is clear, (weak) completness will be a consequence of the cut
elimination procedure we are going to describe in the paper.1

As usual with non-wellfounded proofs a condition limiting the possible shape of the
infinite branches needs to be added, for the sake of soundness. This condition is simplified
by turning to another non-wellfounded Gentzen calculus, which we will denote as G∞

ℓ K+,
whose sequents are annotated. Let us define it precisely.

An annotation is just a formula or the symbol ◦, meaning that no formula is annotated.
Sequents in G∞

ℓ K+ are triples (Γ, s,∆), where Γ,∆ are finite multisets of formulas and
s is an annotation. An additional condition is imposed on sequents, if the annotation of
the sequent is a formula ϕ then □+ϕ must occur in ∆. A sequent (Γ, s,∆) is denoted by
Γ ⇒s ∆. In the case the annotation is a formula ϕ, we say that the formula is in focus
and if it is ◦, we say that the sequent is unfocused. Then the rules of G∞

ℓ K+ are

Ax
Γ, p⇒s p,∆

Ax-⊥
Γ,⊥ ⇒s ∆

Γ ⇒s ∆, ϕ Γ, ψ ⇒s ∆ →L
Γ, ϕ→ ψ ⇒s ∆

Γ, ϕ⇒s ψ,∆ →R
Γ ⇒s ϕ→ ψ,∆

1Note that in [9] the weak completeness of G∞K+ is already proven via refutation trees. Then one
could eliminate cuts via a semantical argument, since (weak) completeness was shown for the cut-free
version of the calculus.
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Γ,⊡+Π ⇒◦ ϕ
□

Σ,□Γ,□+Π ⇒s □ϕ,∆

Γ,⊡+Π ⇒◦ ϕ Γ,⊡+Π ⇒ϕ □+ϕ
□+

Σ,□Γ,□+Π ⇒s □+ϕ,∆

The condition on infinite branches is then that any branch has a suffix that always has
the same formula ϕ in focus.2

We are allowed to move from studying cut elimination in G∞K+ to study cut elimination
in G∞

ℓ K+ since it can be shown that

G∞K+ ⊢ Γ ⇒ ∆ iff G∞
ℓ K+ ⊢ Γ ⇒◦ ∆.

and the same if we have the cut rule in both. For the right to left we just need to delete the
annotations and notice that the branch condition of G∞

ℓ K+ implies the branch condition
of G∞K+. For the left to right notice that by the shape of the rules there is only one
possible way of annotating a proof in G∞K+ such that the root is annotated with ◦. It
is straightforward to see that the branch condition of G∞K+ will imply that the branch
condition of G∞

ℓ K+ is fulfilled in the annotated version of the proof.

Cut elimination for local-progress systems

As we mentioned in the introduction, we want to use our previously defined tools of [11]
to prove cut elimination. Let us briefly introduce these tools here.

We work with local-progress non-wellfounded sequent calculi, let us fix an arbitrary one
and call it C. As usual, C has a set R whose elements are sequent rules, which we call
the rules of C. A pre-proof in C is a (possibly non-wellfounded) tree whose nodes are
labelled by an ordered pair consisting of a sequent and a rule from R such that for any
node with sequent S and rule R if S0, . . . , Sn−1 are the sequents of its successors (in
order) then (S0, . . . , Sn−1, S) must be a rule instance of R.

In addition, C has a function L called the local progress function. Given a rule in-
stance r with premises S0, . . . , Sn−1 and conlusion S of some rule R ∈ R, we have that
LR(S0, . . . , Sn−1, S) ⊆ {0, . . . , n − 1}. We interpret this function as follows, imagine
we have a pre-proof in C and w is a node with n successors. The node w is labelled
with the sequent S and rule R and each of the successors is labelled with the sequent
S0, . . . , Sn−1, respectively. Then we will say that from w to its i-th successor there is

2This particular system is not defined by Shamkanov but is easily infered from the systems he defines.
In particular, in [9] he defines this system with extra annotations since the purpouse is to prove a
realization theorem of justification logic. In [10] he defines a system of K+ with the same annotations
but the sequents have an extra (possibly infinite) set of formulas in order to establish a connection with
an ω-rule system for K+. In any case, the definition of the system here is to have the exact and precise
definition for our purposes, but it is not original in any sense.
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progress iff i ∈ LR(S0, . . . , Sn−1, S). A proof in C is a pre-proof such that in any infinite
branch there is infinitely often progress from a node in the branch to its successor in the
branch.

When defining local progress system it will be usual to describe the rules as

S0 · · · Sn−1 RS
where S0, . . . , Sn−1, S are sequent-schemes. This defines the rule R whose rules instances
are the tuples (S0, . . . , Sn−1, S) where Si is an instantiation of Si and S is an instantiation
of S. In addition we will say that progress only occurs at the i0, . . . , ik-th premises of
R to mean that LR(S0, . . . , Sn−1, S) = {i0, . . . , ik}, where (S0, . . . , Sn−1, S) is any rule
instance of R. In case we do not mention anything about progress in a rule R or we say
that in R there is no progress, we mean that LR(r) = ∅ for any rule instance r of R. 3

Any proof in a local-progress system can be divided into (possibly infinitely many) finite
trees, creating a partition of the nodes of the proof. An element of this partition is
called a local fragment of the proof, the idea is that two nodes are in the same local
fragment iff there is a (non-directed) path in the tree that allows to go from one node to
the other without encountering progress. In particular, note that inside a local fragment
no progress can occur and that all progress in the proof occurs from a leaf of a local
fragment to the root of another local fragment. The main local fragment of a proof is
the fragment starting at the root. The local height of the proof will be the height of the
main local fragment, for a proof π this height will be denoted as |π|.

The tools that we developed in [11] basically allowed us to do corecursion at the level
of local fragments. In other words, in a corecursive step we will give not only the last
node of the resulting proof after the corecursion, but the whole main local fragment. For
details consult Section 3 in [11].

1 Definition of α-G∞
ℓ K+

s

For the Gentzen calculi we are going to define we need to consider the concept of proof
with witnesses. Usualy a Gentzen calculi rule is of the shape

S0 · · · Sn−1 R
S

However, we are going to use rules of shape

π0 ⊢ S0 · · · πm−1 ⊢ Sm−1 Sm · · · Sm+n−1 R
S

where π0, . . . , πm−1 will be proofs of S0, . . . , Sm−1, respectively, in previously defined
Gentzen calculi. In the proof tree this will look as a node with the label (S,R, π0, . . . , πm−1)
and n successors, labelled with sequents Sm to Sm+n−1 respectively.

3In this paper we will work with a system where progress will occur at most in one premise of the
rule instance.
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In such a rule instance π0, . . . , πm−1 are called witnesses. Given a proof in a system with
this kind of rules we will sometimes call it a proof with witnesses and the witnesses are
all the witnesses that occur at some of its rule instances. The main global fragment of
such a proof is its structure without considering the witnesses.

When we talk about a subproof in a calculus of this kind we mean a proof generated by
taking one of its nodes as the root. In particular, these nodes always belong to the main
global fragment, so the witnesses are not subproofs.

Note that in a proof π we may have that a witness τ is a proof with witnesses so it
also has witnesses. The witnesses of τ are not witnesses of π (i.e. being a witness is not
transitive). In this setting we have to understand that a cut-free proof is not only a proof
without instances of cut, it is a proof without instances of cut such that all its witnesses
have no instances of cut either, neither the witnesses of witnesses,. . . and so on.

Definition 2. For each ordinal α and annotation s, we define the system α-G∞
ℓ K+

s as
the local progress system with rules:

Ax
Γ, p⇒s p,∆

Ax-⊥
Γ,⊥ ⇒s ∆

Γ ⇒s ∆, ϕ Γ, ψ ⇒s ∆ →L
Γ, ϕ→ ψ ⇒s ∆

Γ, ϕ⇒s ψ,∆ →R
Γ ⇒s ϕ→ ψ,∆

τ ⊢β Γ,⊡+Π ⇒◦ ϕ
□

Σ,□Γ,□+Π ⇒s □ϕ,∆

τ ⊢β Γ,⊡+Π ⇒◦ ϕ Γ,⊡+Π ⇒ϕ □+ϕ
s = ϕ □+

fΣ,□Γ,□+Π ⇒s □+ϕ,∆

τ0 ⊢β Γ,⊡+Π ⇒◦ ϕ τ1 ⊢γ Γ,⊡+Π ⇒ϕ □+ϕ
s ̸= ϕ □+

uΣ,□Γ,□+Π ⇒s □+ϕ,∆

where β, γ < α and τ ⊢α Γ ⇒s′ ∆ means that τ is a proof of Γ ⇒s′ ∆ in α-G∞
ℓ K+

s′ . We
note that Γ,∆,Σ,Π are finite multisets of formulas and, in particular, may be empty.

In instances of the rules → L, → R, □, □+
f and □+

u , we define the principal formula to
be the displayed formula in the conclusion. In the modal rules, the multisets Σ and ∆
will be called the weakening part of the rule instance.

Progress occurs at the right premise of the □+
f rule. Notice that □+

f and □+
u have side

conditions s = ϕ and s ̸= ϕ, respectively. This, together with the progress conditon
implies that if s = ◦ the system is in fact finitary (every branch will be finite). ■
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As we stated in the preliminaries, a proof in a local-progress calculus can be splitted into
local fragments. In particular, each proof in α-G∞

ℓ K+
s , has a local fragment starting at

the root and local fragments starting at each right premise of a □+
f rule instance.

The s in α-G∞
ℓ K+

s determines which annotation is in focus, so when the annotation in
focus is changed we are forced to go to a witness with a different annotation (see the
□+
u rule).

Definition 3: Adding cuts. We define the cut rule

Γ ⇒s ∆, χ χ,Γ ⇒s ∆ Cut
Γ ⇒s ∆

which makes no progress.

For each α we define the systems:

1. We define α-G∞
ℓ K+

s + Cut to be the systems as in Definition 2 with adding Cut to
the list of rules (in particular, Cut may be used in the main global fragment, in
witnesses, in witnesses of witnesses, and so on).

2. α-G∞
ℓ K+

s + wCut are the system as in Definition 2 with allowing the witnesses to
belong to β-G∞

ℓ K+
s + Cut for β < α and not adding the Cut rule.

3. α-G∞
ℓ K+

s + mCut are the systems as in Definition 2 with the same witnesses but
adding the Cut rule, i.e. Cut may occur in the main global fragment but the wit-
nesses must be cut-free.

A proof in the second system is said to have witnesses-cuts only and a proof in the third
system is said to have main-cuts only. ■

Definition 4. We say that π is a proof in G∞
ℓ K+

s iff there is an α such that π is a proof
in α-G∞

ℓ K+
s and similarly iff we add Cut, mCut or wCut. If π is a proof in G∞

ℓ K+
s + Cut

we will denote by ∥π∥ the minimum ordinal α such that π is a proof in α-G∞
ℓ K+

s + Cut.
This ordinal is called the (ordinal) height of the proof. The (ordinal) height of a node in
a proof is the height of the subproof at that node. ■

Given a cut in a proof we can talk about its size (which is the size of its cut formula)
and its height (which is the Hessenberg sum of the ordinal height of its premises).

The next proposition claims trivial facts about the three possible ways of adding cut to
systems α-G∞

ℓ K+
s and establishes the connection to system G∞

ℓ K+.

Proposition 5. We have that

1. If π is a proof in α-G∞
ℓ K+

s then it is also a proof in α-G∞
ℓ K+

s + wCut and in
α-G∞

ℓ K+
s + mCut.
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2. If π is a proof in α-G∞
ℓ K+

s + wCut or in α-G∞
ℓ K+

s + mCut then it is a proof in
α-G∞

ℓ K+
s + Cut.

3. G∞
ℓ K+

s ⊢ Γ ⇒s ∆ iff G∞
ℓ K+ ⊢ Γ ⇒s ∆ and similarly if we add Cut.

Proof. The first two claims are proven simultaneously by induction on α. The third
claim is proven by induction on ∥π∥ where for π in G∞

ℓ K+ (+Cut), ∥π∥ refers to the the
definition of height in [10].

Our objective will be to show that if G∞
ℓ K+

s + Cut ⊢ Γ ⇒s ∆ then G∞
ℓ K+

s ⊢ Γ ⇒s ∆.
Broadly, we will prove this in three steps (see Theorem 25):

1. If G∞
ℓ K+

s + Cut ⊢ Γ ⇒s ∆ then G∞
ℓ K+

s + mCut ⊢ Γ ⇒s ∆;

2. If G∞
ℓ K+

s + mCut ⊢ Γ ⇒s ∆ then G∞
ℓ K+

s + wCut ⊢ Γ ⇒s ∆, with the additional
property that the proof in G∞

ℓ K+
s +wCut will only have finitely many cuts in each

witness; and

3. If G∞
ℓ K+

s + wCut ⊢ Γ ⇒s ∆ with only finitely many cuts in each witness, then
(using cut admissibility) G∞

ℓ K+
s ⊢ Γ ⇒s ∆.

2 Change of annotations

Sometimes we have a proof of a sequent Γ ⇒s ∆ and we need a proof of Γ ⇒s′ ∆, i.e. we
need to change the annotation of the sequent. As we will show in the following definition,
it is possible to define such a translation of proofs. However, it may change the (ordinal)
height of the proof.

Definition 6. Given π in G∞
ℓ K+

s we can define the proof πs′ of the same sequent in
G∞
ℓ K+

s′ . If s = s′ we just return the same proof, otherwise we proceed by induction in
the local height and cases in the last rule applied:

Ax
Γ, p⇒s p,∆ 7→ Ax

Γ, p⇒s′ p,∆

Ax-⊥
Γ,⊥ ⇒s ∆ 7→ Ax-⊥

Γ,⊥ ⇒s′ ∆

π0
Γ ⇒s ∆, ϕ

π1
Γ, ψ ⇒s ∆ →L

Γ, ϕ→ ψ ⇒s ∆
7→

πs
′

0

Γ ⇒s′ ∆, ϕ

πs
′

1

Γ, ψ ⇒s′ ∆ →L
Γ, ϕ→ ψ ⇒s′ ∆

π0
Γ, ϕ⇒s ψ,∆ →R

Γ ⇒s ϕ→ ψ,∆
7→

πs
′

0

Γ, ϕ⇒s′ ψ,∆ →R
Γ ⇒s′ ϕ→ ψ,∆
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τ ⊢ Γ,⊡+Π ⇒◦ ϕ
□

Σ,□Γ,□+Π ⇒s □ϕ,∆
7→ τ ⊢ Γ,⊡+Π ⇒◦ ϕ

□
Σ,□Γ,□+Π ⇒s′ □ϕ,∆

If π is:

τ ⊢ Γ,⊡+Π ⇒◦ ϕ

π0

Γ,⊡+Π ⇒ϕ □+ϕ
□+
fΣ,□Γ,□+Π ⇒s □+ϕ,∆

(so s = ϕ and then s′ ̸= ϕ) then it maps to

τ ⊢ Γ,⊡+Π ⇒◦ ϕ π0 ⊢ Γ,⊡+Π ⇒ϕ □+ϕ
□+
uΣ,□Γ,□+Π ⇒s′ □+ϕ,∆

If π is:
τ0 ⊢ Γ,⊡+Π ⇒◦ ϕ τ1 ⊢ Γ,⊡+Π ⇒ϕ □+ϕ

□+
uΣ,□Γ,□+Π ⇒s □+ϕ,∆

then it maps to

τ0 ⊢ Γ,⊡+Π ⇒◦ ϕ τ1 ⊢ Γ,⊡+Π ⇒ϕ □+ϕ
□+
uΣ,□Γ,□+Π ⇒s′ □+ϕ,∆

in case s′ ̸= ϕ, or it maps to

τ0 ⊢ Γ,⊡+Π ⇒◦ ϕ

τ1

Γ,⊡+Π ⇒ϕ □+ϕ
□+
fΣ,□Γ,□+Π ⇒s′ □+ϕ,∆

in case s′ = ϕ.

π0
Γ ⇒s ∆, χ

π1
χ,Γ ⇒s ∆ Cut

Γ ⇒s ∆
7→

πs
′

0

Γ ⇒s′ ∆, χ

πs
′

1

χ,Γ ⇒s′ ∆ Cut
Γ ⇒s′ ∆

■

After a change of annotation the height of the proof may be altered. In the next lemma
we prove some bounds to its change.

Lemma 7. Let ϕ be a formula and s be an annotation. We have that

1. If π is a proof in G∞
ℓ K+

ϕ , then ∥πs∥ ≤ ∥π∥+ 1.

2. If π is a proof in G∞
ℓ K+

◦ , then ∥πs∥ ≤ ∥π∥.
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Proof. By induction in the local height. In 1. the possible increase occurs in the □+
f -case

since it can turn a subproof π′ with (possibly) ∥π′∥ = ∥π∥ to a witness which will impose
that the new height is strictly bigger ordinal. Notice that in 2. this is not possible since
there are no instances of □+

f in the original proof, only of □+
u .

In the future, we will need to apply this construction while we prove cut admissibility
and cut elimination. However, in order to use this translation adequately in the proofs,
we will need to have some additional properties. For example, if we apply this translation
to a proof without cuts it must remain without cuts after the translation. We will now
describe the conditions that we need for this translation and other auxiliary translations
such as weakening, contraction and inversion. But first we need to define a special type
of cut, local cuts:

Definition 8. Let π be a proof in G∞
ℓ K+

s + Cut. We say that π has local cuts only in
case π is a proof in G∞

ℓ K+
s + mCut and all the instances of cut occurs at the main local

fragment (i.e. before any modal rule). ■

Definition 9. Let f be an n-ary function whose domain is some set of tuples of proofs
and its range is some sets of proofs. We say that f preserves

1. Ordinal height iff given a tuple (π0, . . . , πn−1) in the domain of f the height of
f(π0, . . . , πn−1) is smaller or equal than the maximum of heights of the πi’s.

2. Local height iff given a tuple (π0, . . . , πn−1) in the domain of f the height of
f(π0, . . . , πn−1) is smaller or equal than the maximum of local heights of the πi’s.

3. Size of cuts iff given a tuple (π0, . . . , πn−1) in the domain of f such that each πi
has all its cuts are of size smaller than n, then f(π0, . . . , πn−1) has also all its cuts
of size smaller than n.4 In particular, if the πi’s are cut-free (i.e. the sizes of cuts
are < 0) then f(π0, . . . , πn−1) is also cut-free.

4. Freeness of cuts in the main local fragment iff given a tuple (π0, . . . , πn−1) in
the domain of f such that each πi without cuts in its main local fragment, then
f(π0, . . . , πn−1) does not have cuts in its main local fragment neither.

5. Locality of cuts iff given a tuple (π0, . . . , πn−1) in the domain of f such that each
πi has local cuts only, then f(π0, . . . , πn−1) also has local cuts only.

6. Locality of cuts in witnesses iff given a tuple (π0, . . . , πn−1) in the domain of f such
that each πi has witnesses with local cuts only, then the witnesses of f(π0, . . . , πn−1)
have local cuts only.

If f preserves local height, sizes of cuts, freeness of cuts in the main local fragment
and locality of cuts we say that it is weakly preserving. If f presreves all the properties
described above we will say that it is strongly preserving. ■

4With all its cuts here we mean the cuts in the main global fragment of the proof, in the witnesses,
in the witnesses of witnesses, and so on.
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The following observation is straightforward from the definition.

Proposition 10. Change of annotations, i.e. the function π 7→ πs, is weakly preserving.

3 Auxiliary functions

In this section we just state one big lemma with all the auxiliary functions that we will
need (apart from change of annotations, see Section 2). All the auxiliary functions can
be defined straightforwardly by recursion in the local height and all its properties can
be shown straightforwardly by induction in the local height. If the reader wants to see
explicit definitions they are encouraged to look in the appendix chapters A, B and C.

Lemma 11. Let p be a propositional variable, χ, χ0, χ1 be formulas and Γ,Γ′,∆,∆′ be
multisets of formulas. There are strongly preserving functions wkΓ′;∆′ , lctrp, rctrp,
rctr□+χ, inv⊥, linv0χ0→χ1

, linv1χ0→χ1
, rinvχ0→χ1 from proofs in G∞

ℓ K+
s + Cut to proofs in

G∞
ℓ K+

s + Cut such that:

1. π ⊢ Γ ⇒s ∆ implies wkΓ′;∆′(π) ⊢ Γ,Γ′ ⇒s ∆,∆
′.

2. π ⊢ Γ, p, p⇒s ∆ implies lctrp(π) ⊢ Γ, p⇒s ∆.

3. π ⊢ Γ ⇒s ∆, p, p implies rctrp(π) ⊢ Γ ⇒s ∆, p.

4. π ⊢ Γ ⇒s ∆,□+χ,□+χ implies rctr□+χ(π) ⊢ Γ ⇒s ∆,□+χ.

5. π ⊢ Γ ⇒s ∆,⊥ implies ctr⊥(π) ⊢ Γ ⇒s ∆.

6. π ⊢ Γ, χ0 → χ1 ⇒s ∆ implies linv0χ0→χ1
(π) ⊢ Γ ⇒s ∆, χ0.

7. π ⊢ Γ, χ0 → χ1 ⇒s ∆ implies linv1χ0→χ1
(π) ⊢ Γ, χ1 ⇒s ∆.

8. π ⊢ Γ ⇒s ∆, χ0 → χ1 implies rinvχ0→χ1(π) ⊢ Γ, χ0 ⇒s ∆, χ1.

4 Pushing cuts

The first task to prove cut elimination will be to show that it is possible to push cuts to
upper parts of the proof. We will do this in two stages: first pushing them outside the
main local fragment recursively and then pushing them outside the main global fragment
to witnesses corecursively.

4.1 Pushing a cuts outside main local fragment

Definition 12. Let π ⊢ Γ ⇒s ∆, χ and τ ⊢ χ,Γ ⇒s ∆. We define cutχ(π, τ) to be the
result of applying the rule Cut to π and τ .

Notice that it preserves locality of cuts. ■
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We start by pushing only one cut that we assume to be a top-most cut in the main local
fragment, i.e. there are no cuts above it belonging to the main local fragment.

Lemma 13. There is a binary function push-topχ whose domain are the pairs (π, τ) of
proofs such that

1. π and τ are proofs in G∞
ℓ K+

s + Cut with no cuts in their main local fragment, and

2. we have that π ⊢ Γ ⇒s ∆, χ and τ ⊢ χ,Γ ⇒s ∆ for some Γ,∆,

and that returns a proof in G∞
ℓ K+

s + Cut with the following properties:

1. push-topχ(π, τ) ⊢ Γ ⇒s ∆ and has no cuts in its main local fragment,

2. if the size of cuts in π, the size of cuts in τ and the size of the formula χ are strictly
smaller than n, then the size of cuts in push-topχ(π, τ) are strictly smaller than n,
and

3. push-top preserves locality of cuts in witnesses.

Proof. We proceed by induction in the pair (|χ|, |π| + |τ |) (i.e. the size of χ and the
sum of the local heights of |π| and |τ |) ordered lexicographically. All the possible cut
reductions the displayed in Appendix D, we are going to argue that the conditions 1 to
3 are fulfilled after each of the reductions, and we have to say what each cuti is when it
occurs in a cut reduction.

The case where the label is the cut formula and the axiomatic cases are straightforward
using the properties of the auxiliary functions.

In the principal reduction case, cut1 and cut2 are just applications of the I.H. (Induction
Hypothesis) using that the size of the cut formula is strictly smaller. No cut will be in
the main local fragment and the condition on the size will be fulfilled since we use the
I.H. with smaller cut formulas. If the original proof has witnesses with local cuts only,
then so does the proof after the cut reduction just by using the I.H. In this argument,
we have to use that the auxiliary functions used are strongly preserving.

For the commutative implication cases, each cuti will just be an application of the I.H.
using that the sum of local heights is smaller with the same cut formula χ. That the
conditions are fulfilled can be seen by using that the auxiliary functions used are strongly
preserving and employing the I.H. in a similar manner to previous case (although for the
bound in the sizes of cuts we now use that the I.H. is used with χ, and not with a smaller
cut formula).

We turn to the modal cases. If the cut formula is in the weakening part of a modal rule,
all the desired properties are easily fulfilled. So we turn to the commutative cases. In
these, cuti will always be a proper application of the cut rule. We note that still the main
local fragment will have no application of cut since all the cuti appear outside the main
local fragment. The condition on the sizes of cuts is easily fulfilled since the cut formulas
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of the cuti are smaller or equal than the original cut formula (the cut formula will be of
shape □χ0 or □+χ0 and the cuti’s will have either the cut formula or χ0 only). We also
note that all the auxiliary functions used are at least weakly preserving, so using them
will not break this property.

Lastly we argue for the locality of cuts in witnesses. We note one thing: when we apply
an auxiliary function to a subproof of the main global fragment of the original proof, we
want to use the preservation of locality of cuts in witnesses, while if we apply an auxiliary
function to a witness, we want to use the preservation of locality of cuts (because the
witness have the cuts local while the subproof will have the property that its witnesses
have cuts local).5 Strongly preserving auxiliary functions preserves both, but change of
annotations only preserve locality of cuts. However, change of annotations is only applied
to witnesses. Also, the cuti’s we add at witnesses are always in the main local fragment
(since we add them at the bottom and we do not add any modal rule at witnesses).

Let us explicitely discuss what occurs at □-□+
f and □+

u -□+
f reductions, since these cases

are a little harder. In these cases some witnesses become subproofs after the cut reduc-
tion, π0 in the first reduction and both π0 and π1 in the second. This is non-problematic
for our reasoning since we know that after applying all the auxiliary functions to those
witnesses they have local cuts only, and then all their witness have no cuts so in partic-
ular all the witnesses have local cuts only. In other words, we are adding the cuts in the
main local fragment of the witnesses to the main global fragment of the proof after the
cut reduction, thus enlarging the number of cuts in the main global fragment. This is
non-problematic because the cuts added in this way are outside the main local fragment,
which is what we want to have cut-free in this lemma.

Lemma 14. There is a function push-local from proofs in G∞
ℓ K+

s + Cut to proofs in
G∞
ℓ K+

s + Cut such that:

1. for any π ⊢ Γ ⇒s ∆ proof in G∞
ℓ K+

s + Cut we have that push-local(π) ⊢ Γ ⇒s ∆
with no cuts in its main local fragment,

2. push-local preserves sizes of cuts, and

3. push-local preserves locality of cuts in witnesses.

Proof. The proof is a simple induction in the number of cuts in the main local fragment
of π, using push-top.

4.2 Pushing cuts outside main global fragment

Lemma 15. There is a function push from proofs in G∞
ℓ K+

s +Cut to proofs in G∞
ℓ K+

s +
wCut (so without cuts in its main global fragment) such that:

1. for any π ⊢ Γ ⇒s ∆ proof in G∞
ℓ K+

s + Cut, we have push(π) ⊢ Γ ⇒s ∆,
5We remember that witnesses are not subproofs (neither the opposite).
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2. push preserves sizes of cuts, and

3. push preserves locality of cuts in witnesses.

Proof. To obtain push it suffices to apply push-local corecursively through the main global
fragment. By the first condition of push-local it is clear that the resulting proof will have
no cuts in its main global fragment since all local fragments constituting the new proof
are cut-free.

If we have a bound n on the size of cuts, by the conditions of push-local, we have that
each of the local fragments in the new proof will have the same bound for cuts. But note
that if each local fragment of a proof has all the cut-sizes bounded by n, the all cut-sizes
of the proof are bounded by n.

For the condition on witnesses we have the same, by push-local we know that if we start
with a proof whose witnesses have local-cuts only then each local fragment in the resulting
proof after the corecursion will have witnesses with local-cuts only. But a proof with such
local fragments will be a proof whose witnesses have local-cuts only, as desired.

5 Cut admissibility

Our strategy to show cut elimination will require first to show that the rule Cut is
admissible. Notice that for finitary proofs it is straightforward to prove cut elimination
from cut admissibility by an induction in the height of the proof. Our cut elimination
will follow a similar approach, but it is more involved since our notion of height is not so
straightforward (we do not decrease height by going to a child node but only by going
to a witness).

With cut admissibility in G∞
ℓ K+

s we mean that for any Γ,∆, χ if G∞
ℓ K+

s ⊢ Γ ⇒s ∆, χ
and G∞

ℓ K+
s ⊢ χ,Γ ⇒s ∆ then G∞

ℓ K+
s ⊢ Γ ⇒s ∆.

If we talk about cut admissibility for χ we mean the statement that for any Γ,∆ if
G∞
ℓ K+

s ⊢ Γ ⇒s ∆, χ and G∞
ℓ K+

s ⊢ χ,Γ ⇒s ∆ then G∞
ℓ K+

s ⊢ Γ ⇒s ∆, and if we talk
about cut admissibility for χ with cuts of height smaller than α we mean the statement
that for any Γ,∆, π, τ if π ⊢ Γ ⇒s ∆, χ, τ ⊢ χ,Γ ⇒s ∆ in G∞

ℓ K+
s and ∥π∥ ⊕ ∥τ∥ < α

(where ⊕ is the Hessenberg sum of ordinals) then G∞
ℓ K+

s ⊢ Γ ⇒s ∆.

5.1 Atomic

Lemma 16. If G∞
ℓ K+

s ⊢ Γ ⇒s ∆, p and G∞
ℓ K+

s ⊢ p,Γ ⇒s ∆, then G∞
ℓ K+

s ⊢ Γ ⇒s ∆.

Proof. We prove this by induction in |π|+ |τ | (i.e. the sum of local heights). The possible
cut reductions are the axiomatic cases, the implication commutative cases and the weak-
ening case in the modal cases. We note that in all these cases were a cut rule appears in
the reduction it can be solved using the I.H. (i.e. the local height is smaller).
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5.2 Box formulas

Lemma 17. If we have cut admissibility for cut formula χ and G∞
ℓ K+

s ⊢ Γ ⇒s ∆,□χ
and G∞

ℓ K+
s ⊢ □χ,Γ ⇒s ∆, then G∞

ℓ K+
s ⊢ Γ ⇒s ∆.

Proof. We prove this by induction in |π|+ |τ | (i.e. the sum of local heights). The possible
cut reductions are the axiomatic cases where the axiomatic character is in a side formula,
the implication commutative cases, the weakening case and □-□, □-□+

u and □-□+
f in the

modal cases. In the axiomatic and weakening cases, no cut remains after the reduction.
In the implication commutative cases, we can use the I.H. when a cuti appears after the
reduction since the sum of local heights is smaller. Finally, for the □-□, □-□+

u and □-□+
f

cases it suffices to use the assumption of cut admissiblity for χ.

5.3 Master formula

Definition 18. We say that a proof is (□+χ, α)-unblocked iff all its cuts have cut formula
χ or □+χ and in case the cut formula is □+χ then the height of the cut is ≤ α and the
subproofs at the premises are proofs in G∞

ℓ K+
s (i.e. they have not cuts). ■

Lemma 19. Assume we have cut admissibility for χ (with cuts of any height) and also
for □+χ with cuts of height smaller than α. If π ⊢ Γ ⇒s ∆,□+χ and τ ⊢ □+χ,Γ ⇒s ∆
in G∞

ℓ K+
s such that ∥π∥ ⊕ ∥τ∥ ≤ α, then there is a ρ ⊢ Γ ⇒s ∆ in G∞

ℓ K+
s + mCut that

is (□+χ, α)-unblocked and has no cuts in its main local fragment.

Proof. By induction in the sum of the local height of π and τ . The possible cut reductions
are the axiomatic cases where the label is the cut formula, the axiomatic character is in
a side formula, the commutative implication cases and the modal cases of weakening or
□+
u -□, □+

u -□+
u and □+

u -□+
f . In the reduction rules where the label is the cut formula,

axiomatic and modal weakening no cuts remain, so clearly the desired result holds.

In the commutative implication reductions it suffices to substitute each cuti with an
application of the I.H.

Finally, we treat the □+
u -□, □+

u -□+
u and □+

u -□+
f reductions. By inspection we see that

all the main local fragments have no cuts. Finally, let us see how to interpret cuti in each
case to get a proof with main cuts only and the unblocked condition.

□+
u -□. In this case cut1 is admissibility of cuts with cut formula □+χ and height smaller

than α and cut2 is admissibility of cuts with cut formula χ. We are allowed to used the
first admissibility for the cut1 since

∥wk(π1)
◦∥ ⊕ ∥wk(τ0)∥ ≤ (∥wk(π1)∥+ 1)⊕ ∥wk(τ0)∥ ≤

(∥π1∥+ 1)⊕ ∥τ0∥ ≤ ∥π∥ ⊕ ∥τ0∥ < ∥π∥ ⊕ ∥τ∥ = α

thanks to ∥π1∥ < ∥π∥, ∥τ0∥ < ∥τ∥ being witnesses. This gives a proof without cuts so it
has main cuts only and it is unblocked, as desired.
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□+
u -□u. In this case cut1, cut3 are by admissibility of cuts with cut formula □+χ and

height smaller than α and cut2, cut4 is admissibility of cuts with cut formula χ. We are
allowed to used the first admissibility for cut1 and cut3 since

∥wk(π1)
◦∥ ⊕ ∥wk(τ0)∥ ≤ (∥wk(π1)∥+ 1)⊕ ∥wk(τ0)∥ ≤

(∥π1∥+ 1)⊕ ∥τ0∥ ≤ ∥π∥ ⊕ ∥τ0∥ < ∥π∥ ⊕ ∥τ∥ = α

∥wk(π1)
ϕ∥ ⊕ ∥wk(τ1)∥ ≤ (∥wk(π1)∥+ 1)⊕ ∥wk(τ1)∥ ≤

(∥π1∥+ 1)⊕ ∥τ1∥ ≤ ∥π∥ ⊕ ∥τ1∥ < ∥π∥ ⊕ ∥τ∥ = α

thanks to ∥π1∥ < ∥π∥, ∥τ0∥, ∥τ1∥ < ∥τ∥ being witnesses. This gives a proof without cuts
so it has main cuts only and it is unblocked, as desired.

□+
u -□f . In this case cut1 is by admissibility of cuts with cut formula □+χ and height

smaller than α and cut2 is by admissibility of cuts with cut formula χ and cut3, cut4 are
standard cuts. We are allowed to used the first admissibility for cut1 since

∥wk(π1)
◦∥ ⊕ ∥wk(τ0)∥ ≤ (∥wk(π1)∥+ 1)⊕ ∥wk(τ0)∥ ≤

(∥π1∥+ 1)⊕ ∥τ0∥ ≤ ∥π∥ ⊕ ∥τ0∥ < ∥π∥ ⊕ ∥τ∥ = α

thanks to ∥π1∥ < ∥π∥, ∥τ0∥ < ∥τ∥ being witnesses. There are two cuts after the reduction,
one with cut formula χ (cut4) and other with cut formula □+χ (cut3). cut3 has the
premises with no cuts, and its height is

∥wk(π1)
ϕ∥ ⊕ ∥wk(τ1)∥ ≤ (∥wk(π1)∥+ 1)⊕ ∥wk(τ1)∥ ≤

(∥π1∥+ 1)⊕ ∥τ1∥ ≤ ∥π∥ ⊕ ∥τ1∥ ≤ ∥π∥ ⊕ ∥τ∥ = α

thanks to ∥π1∥ < ∥π∥ being a witness and ∥τ1∥ ≤ ∥τ∥ being a subproof. This means
that the resulting proof has only main cuts and it is (□+χ, α)-unblocked.

Lemma 20. Assume we have cut admissibility for χ (with cuts of any height) and also
for □+χ with cuts of height smaller than α. Let π ⊢ Γ ⇒s ∆ in G∞

ℓ K+
s + mCut and

assume it is (□+χ, α)-unblocked. Then, there is a ρ ⊢ Γ ⇒s ∆ in G∞
ℓ K+

s + mCut that is
(□+χ, α)-unblocked and has no cuts with cut formula □+χ in its main local fragment.

Proof. This is a simple induction using Lemma 19 in the number of cuts with cut formula
□+χ in its main local fragment. The assumption that π is (□+χ, α)-unblocked is of
fundamental importance since it allows use to use Lemma 19 to any cut at the main
local fragment with cut formula □+χ.

Lemma 21. Assume we have cut admissibility for χ (with cuts of any height) and
also for □+χ with cuts of height smaller than α. Then G∞

ℓ K+
s ⊢ Γ ⇒s ∆,□+χ and

G∞
ℓ K+

s ⊢ □+χ,Γ ⇒s ∆, implies G∞
ℓ K+

s + mCut ⊢ Γ ⇒s ∆ such that all the cuts have χ
as cut formula.
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Proof. This is just a corecursion for a local progressing system (i.e. at each corecursive
step we provide a whole local fragment, not just a node) using Lemma 20.

Lemma 22. Assume we have cut admissibility for cuts of size smaller than n and
let |□+χ| = n. Then G∞

ℓ K+
s ⊢ Γ ⇒s ∆,□+χ and G∞

ℓ K+
s ⊢ □+χ,Γ ⇒s ∆ implies

G∞
ℓ K+

s ⊢ Γ ⇒s ∆.

Proof. Let π ⊢ Γ ⇒s ∆,□+χ and τ ⊢ □+χ,Γ ⇒s ∆. We proceed by induction in
∥π∥⊕∥τ∥, so assume we have cut admissibility for □+χ with cuts of height smaller than
∥π∥ ⊕ ∥τ∥. We also have cut admisibility for χ thanks to the assumptions. Then by
Lemma 21 we can get a proof ρ0 of the same sequent in G∞

ℓ K+
s + mCut whose only cut

formula is χ.

Then we can use Lemma 15 to obtain a proof ρ1 with witness cuts only and all of them
of size smaller than n and each ocurring at the main local fragment of some witness (so
each witness have a finite amount of cuts). By an induction in the number of local cuts
in the witness and using the hypothesis of cut admissibility for size < n we can change
each witness to a cut-free witness, obtaining the desired proof.

5.4 General case

Theorem 23 : Cut admissibility. Let G∞
ℓ K+

s ⊢ Γ ⇒s ∆, χ and G∞
ℓ K+

s ⊢ χ,Γ ⇒s ∆.
Then, we have that G∞

ℓ K+
s ⊢ Γ ⇒s ∆.

Proof. This is a simple induction in the size of χ using the lemmas previously proved in
this section. In case χ is an implication, i.e. of shape χ0 → χ1, first we need to apply the
inversion to get formulas of smaller size (and weakening to make the sequents match).

With cut admissibility we can show cut elimination for proofs with finitely many cuts.
However, in the non-wellfounded setting it is not straightforward that this gives us cut
elimination for any proof, since our proofs may have infinitely many cuts. The purpose
of the next section will be to show cut elimination in full generality for G∞

ℓ K+
s using cut

admissibility, thus providing and example of how to get cut elimination from admissibility
in the non-wellfounded setting. Before finalizing this section we show a corollary which
we will use during cut elimination.

Corollary 24. Suppose that π ⊢ Γ ⇒s ∆ in G∞
ℓ K+

s + Cut. Assume that either:

1. π has finitely many instances of cut, or

2. π has local cuts only.

Then G∞
ℓ K+

s ⊢ Γ ⇒s ∆.

Proof. In case π has local cuts only then it must be the case that π has finitely many
instances of cut, since the main local fragment is always finite. Then, in both cases we
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can assume that π has finitely many instances of cut. The result is then proven by an
induction in the number of cuts using Theorem 23.

6 Cut elimination

We finish the paper by proving the promised result: cut elimination for G∞
ℓ K+

s . Note that
by the translations defined in Section 1 between G∞

ℓ K+ and G∞
ℓ K+

s this cut elimination
will prove cut elimination for G∞

ℓ K+. In fact, since in reality the difference between
G∞
ℓ K+

s and G∞
ℓ K+ is just how we accomodate the information of proofs, it can be

argued that this cut elimination is a cut elimination method for G∞
ℓ K+ and G∞

ℓ K+
s just

provides a way to define the necessary corecursive functions easier.

Theorem 25: Cut Elimination. If G∞
ℓ K+

s + Cut ⊢ Γ ⇒s ∆, then G∞
ℓ K+

s ⊢ Γ ⇒s ∆.

Proof. Let π ⊢ Γ ⇒s ∆ in G∞
ℓ K+

s + Cut. We proceed by induction on ∥π∥. Note that
for any witness τ of π we have that ∥τ∥ < ∥π∥. So by induction hypothesis we can get a
τ ′ proof in G∞

ℓ K+
s proving the same sequent as τ . Let π1 be the result of replacing each

of its witnesses τ by τ ′, we notice that π1 is a proof in G∞
ℓ K+

s + mCut proving the same
sequent as π (changing witnesses do not alter the conclusion, but we may have altered
the height of the proof so from now own the I.H. cannot be used anymore).

Let π2 := push(π1), by Lemma 15 (using that a proof with main cuts only have witnesses
with local cuts only) we have that π2 is proof in G∞

ℓ K+
s +wCut proving the same sequent

as π and such that all its witnesses have local cuts only.

Let ι be a witness of π2, by Corollary 24 there is an ι′ proof in G∞
ℓ K+

s proving the same
sequent as ι. Let π3 be the result of replacing each witness ι of π2 by ι′. Then π3 proves
the same sequent as π, since a change of witnesses do not change the conclusion. In
addition since π2 have witness-cuts only and π3 has the same main global fragment as
π2 but with no cuts in the witnesses we can conclude that π3 is cut free.

Conclusion and future work

We proved cut-elimination for a non-wellfounded calculus of K+, using only basic tech-
niques of structural proof theory (such as ordinal recursion) and corecursion. The method
is mainly based in splitting the proofs nicely, taming the global branch condition in the
process. This proof also works for similar systems to the master modality, such as com-
mon knowledge in which the □ and □+ rules change to (for the system G∞

ℓ K+):

Γ,Π,CΠ ⇒◦ ϕ □iΣ,□iΓ,CΠ ⇒s □iϕ,∆

(Γi,Π,CΠ ⇒◦ ϕ)i<n (Γi,Π,CΠ ⇒ϕ Cϕ)i<n
C

Σ,□0Γ0, . . . ,□n−1Γn−1,CΠ ⇒s Cϕ,∆

where we assume we have n agents, i ∈ {0, . . . , n− 1}, □i is the knowledge modality for
agent i, and C is the common knowledge modality.
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Future work goes along this line and we will study how far this method can go. Of
particular interest it is the case of PDL (Propositional Dynamic Logic). A problem for
applying this method will be to guarantee that while we push cuts outside the main
global fragment each witness has only a finite amount of cuts.

Finally, another line of work is to explore how our method can be extended to more
complex branch conditions such as the ones used to deal with the modal µ-calculus. In
this direction there are two questions which we consider of interest to explore:

1. How can we slice non-wellfounded proofs to ease cut eliminition?

2. Which methods can be use to show cut elimination from cut admissibility for non-
wellfounded proofs?

A Weakening

Definition 26. Given π ⊢ Γ ⇒s ∆ in G∞
ℓ K+

s we can define, by recursion in the local
height and cases in the last rule apply, the proof wkΓ′;∆′(π) proof of Γ,Γ′ ⇒s ∆,∆′ in
G∞
ℓ K+

s as:

Ax
Γ, p⇒s p,∆ 7→ Ax

Γ,Γ′, p⇒s p,∆,∆
′

Ax-⊥
Γ,⊥ ⇒s ∆ 7→ Ax-⊥

Γ,Γ′⊥ ⇒s ∆,∆
′

π0
Γ ⇒s ∆, ϕ

π1
Γ, ψ ⇒s ∆ →L

Γ, ϕ→ ψ ⇒s ∆
7→

wkΓ′;∆′(π0)

Γ,Γ′ ⇒s ∆,∆
′, ϕ

wkΓ′;∆′(π1)

Γ,Γ′, ψ ⇒s ∆,∆
′
→L

Γ,Γ′, ϕ→ ψ ⇒s ∆,∆
′

π0
Γ, ϕ⇒s ψ,∆ →R

Γ ⇒s ϕ→ ψ,∆
7→

wkΓ′;∆′(π0)

Γ,Γ′, ϕ⇒s ψ,∆,∆
′

→R
Γ,Γ′ ⇒s ϕ→ ψ,∆,∆′

τ ⊢ Γ,⊡+Π ⇒◦ ϕ
□

Σ,□Γ,□+Π ⇒s □ϕ,∆
7→ τ ⊢ Γ,⊡+Π ⇒◦ ϕ

□
Σ,Γ′,□Γ,□+Π ⇒s □ϕ,∆,∆′

If π is:

τ ⊢ Γ,⊡+Π ⇒◦ ϕ

π0

Γ,⊡+Π ⇒ϕ □+ϕ
□+
fΣ,□Γ,□+Π ⇒s □+ϕ,∆

then it maps to
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τ ⊢β Γ,⊡+Π ⇒◦ ϕ

π0

Γ,⊡+Π ⇒ϕ □+ϕ
□+
fΣ,Γ′,□Γ,□+Π ⇒s □+ϕ,∆,∆′

If π is:

τ0 ⊢ Γ,⊡+Π ⇒◦ ϕ τ1 ⊢ Γ,⊡+Π ⇒ϕ □+ϕ
□+
uΣ,□Γ,□+Π ⇒s □+ϕ,∆

then it maps to

τ0 ⊢ Γ,⊡+Π ⇒◦ ϕ τ1 ⊢ Γ,⊡+Π ⇒ϕ □+ϕ
□+
uΣ,Γ′,□Γ,□+Π ⇒s′ □+ϕ,∆,∆′

π0
Γ ⇒s ∆, χ

π1
χ,Γ ⇒s ∆ Cut

Γ ⇒s ∆
7→

wkΓ′;∆′(π0)

Γ,Γ′ ⇒s ∆,∆
′, χ

wkΓ′;∆′(π1)

χ,Γ,Γ′ ⇒s ∆,∆
′

Cut
Γ,Γ′ ⇒s ∆,∆

′

■

Lemma 27. The function wkΓ′;∆′ is strongly preserving.

B Contraction

B.1 Contraction of propositional variable in the left

Definition 28. Given π ⊢ Γ, p, p⇒s ∆ in G∞
ℓ K+

s we can define, by recursion in the local
height and cases in the last rule apply, the proof lctrp(π) proof of Γ, p ⇒s ∆ in G∞

ℓ K+
s

as:

Ax
Γ, p, p⇒s p,∆ 7→ Ax

Γ, p⇒s p,∆

Ax
Γ, p, p, q ⇒s q,∆ 7→ Ax

Γ, p, q ⇒s q,∆

for q ̸= p.

Ax-⊥
Γ, p, p,⊥ ⇒s ∆ 7→ Ax-⊥

Γ, p,⊥ ⇒s ∆

π0
Γ, p, p⇒s ∆, ϕ

π1
Γ, p, p, ψ ⇒s ∆ →L

Γ, p, p, ϕ→ ψ ⇒s ∆
7→

lctrp(π0)
Γ, p⇒s ∆, ϕ

lctrp(π1)
Γ, p, ψ ⇒s ∆ →L

Γ, p, ϕ→ ψ ⇒s ∆
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π0
Γ, p, p, ϕ⇒s ψ,∆ →R

Γ, p, p⇒s ϕ→ ψ,∆
7→

lctrp(π0)
Γ, p, ϕ⇒s ψ,∆ →R

Γ, p⇒s ϕ→ ψ,∆

τ ⊢ Γ,⊡+Π ⇒◦ ϕ
□

Σ, p, p,□Γ,□+Π ⇒s □ϕ,∆
7→ τ ⊢ Γ,⊡+Π ⇒◦ ϕ

□
Σ, p,□Γ,□+Π ⇒s □ϕ,∆

If π is:

τ ⊢ Γ,⊡+Π ⇒◦ ϕ

π0

Γ,⊡+Π ⇒ϕ □+ϕ
□+
fΣ, p, p,□Γ,□+Π ⇒s □+ϕ,∆

then it maps to

τ ⊢ Γ,⊡+Π ⇒◦ ϕ

π0

Γ,⊡+Π ⇒ϕ □+ϕ
□+
fΣ, p,□Γ,□+Π ⇒s □+ϕ,∆

If π is:

τ0 ⊢ Γ,⊡+Π ⇒◦ ϕ τ1 ⊢ Γ,⊡+Π ⇒ϕ □+ϕ
□+
uΣ, p, p,□Γ,□+Π ⇒s □+ϕ,∆

then it maps to

τ0 ⊢ Γ,⊡+Π ⇒◦ ϕ τ1 ⊢ Γ,⊡+Π ⇒ϕ □+ϕ
□+
uΣ, p,□Γ,□+Π ⇒s □+ϕ,∆

π0
Γ, p, p⇒s ∆, χ

π1
χ,Γ, p, p⇒s ∆ Cut

Γ, p, p⇒s ∆
7→

lctrp(π0)
Γ, p⇒s ∆, χ

lctrp(π1)
χ,Γ, p⇒s ∆ Cut

Γ, p⇒s ∆

■

Lemma 29. The function lctrp is strongly preserving.

B.2 Contraction of propositional variable in the right

Definition 30. Given π ⊢ Γ ⇒s ∆, p, p in G∞
ℓ K+

s we can define, by recursion in the local
height and cases in the last rule apply, the proof lctrp(π) proof of Γ ⇒s ∆, p in G∞

ℓ K+
s

as:

Ax
Γ, p⇒s p, p,∆ 7→ Ax

Γ, p⇒s p,∆

21



Ax
Γ, q ⇒s q, p, p,∆ 7→ Ax

Γ, q ⇒s q, p,∆

for q ̸= p.

Ax-⊥
Γ,⊥ ⇒s p, p,∆ 7→ Ax-⊥

Γ,⊥ ⇒s p,∆

π0
Γ ⇒s ∆, p, p, ϕ

π1
Γ, ψ ⇒s ∆, p, p →L

Γ, ϕ→ ψ ⇒s p, p,∆
7→

rctrp(π0)
Γ ⇒s ∆, p, ϕ

rctrp(π1)
Γ, ψ ⇒s ∆, p →L

Γ, ϕ→ ψ ⇒s ∆, p

π0
Γ, ϕ⇒s ψ,∆, p, p →R

Γ,⇒s ϕ→ ψ,∆, p, p
7→

rctrp(π0)
Γ, ϕ⇒s ψ,∆, p →R

Γ ⇒s ϕ→ ψ,∆, p

τ ⊢ Γ,⊡+Π ⇒◦ ϕ
□

Σ,□Γ,□+Π ⇒s □ϕ,∆, p, p
7→ τ ⊢ Γ,⊡+Π ⇒◦ ϕ

□
Σ,□Γ,□+Π ⇒s □ϕ,∆, p

If π is:

τ ⊢ Γ,⊡+Π ⇒◦ ϕ

π0

Γ,⊡+Π ⇒ϕ □+ϕ
□+
fΣ,□Γ,□+Π ⇒s □+ϕ,∆, p, p

then it maps to

τ ⊢ Γ,⊡+Π ⇒◦ ϕ

π0

Γ,⊡+Π ⇒ϕ □+ϕ
□+
fΣ,□Γ,□+Π ⇒s □+ϕ,∆, p

If π is:

τ0 ⊢ Γ,⊡+Π ⇒◦ ϕ τ1 ⊢ Γ,⊡+Π ⇒ϕ □+ϕ
□+
uΣ,□Γ,□+Π ⇒s □+ϕ,∆, p, p

then it maps to

τ0 ⊢ Γ,⊡+Π ⇒◦ ϕ τ1 ⊢ Γ,⊡+Π ⇒ϕ □+ϕ
□+
uΣ,□Γ,□+Π ⇒s □+ϕ,∆, p

π0
Γ ⇒s ∆, p, p, χ

π1
χ,Γ ⇒s ∆, p, p Cut

Γ ⇒s ∆, p, p
7→

rctrp(π0)
Γ ⇒s ∆, p, χ

rctrp(π1)
χ,Γ ⇒s ∆, p Cut

Γ ⇒s ∆, p

■
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Lemma 31. The function rctrp is strongly preserving.

B.3 Contraction of boxed formula in the right

Definition 32. Given π ⊢ Γ ⇒s ∆,□+χ,□+χ in G∞
ℓ K+

s we can define, by recursion in
the local height and cases in the last rule apply, the proof rctrp(π) proof of Γ ⇒s ∆,□+χ
in G∞

ℓ K+
s as:

Ax
Γ, p⇒s p,□+χ,□+χ,∆ 7→ Ax

Γ, p⇒s p,□+χ,∆

Ax-⊥
Γ,⊥ ⇒s □+χ,□+χ,∆ 7→ Ax-⊥

Γ,⊥ ⇒s □+χ,∆

If π is
π0

Γ ⇒s ∆,□+χ,□+χ, ϕ

π1

Γ, ψ ⇒s ∆,□+χ,□+χ
→L

Γ, ϕ→ ψ ⇒s □+χ,□+χ,∆

then it maps to
rctr□+χ(π0)

Γ ⇒s ∆,□+χ, ϕ

rctr□+χ(π1)

Γ, ψ ⇒s ∆,□+χ
→L

Γ, ϕ→ ψ ⇒s ∆,□+χ

If π is
π0

Γ, ϕ⇒s ψ,∆,□+χ,□+χ
→R

Γ,⇒s ϕ→ ψ,∆,□+χ,□+χ

7→
rctr□+χ(π0)

Γ, ϕ⇒s ψ,∆,□+χ
→R

Γ ⇒s ϕ→ ψ,∆,□+χ

then it maps to

τ ⊢ Γ,⊡+Π ⇒◦ ϕ
□

Σ,□Γ,□+Π ⇒s □ϕ,∆,□+χ,□+χ
7→ τ ⊢ Γ,⊡+Π ⇒◦ ϕ

□
Σ,□Γ,□+Π ⇒s □ϕ,∆,□+χ

If π is:

τ ⊢ Γ,⊡+Π ⇒◦ ϕ

π0

Γ,⊡+Π ⇒ϕ □+ϕ
□+
fΣ,□Γ,□+Π ⇒s □+ϕ,∆,□+χ,□+χ

then it maps to

τ ⊢ Γ,⊡+Π ⇒◦ ϕ

π0

Γ,⊡+Π ⇒ϕ □+ϕ
□+
fΣ,□Γ,□+Π ⇒s □+ϕ,∆,□+χ

If π is:

τ ⊢ Γ,⊡+Π ⇒◦ χ

π0

Γ,⊡+Π ⇒χ □+χ
□+
fΣ,□Γ,□+Π ⇒s □+χ,∆,□+χ
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then it maps to

τ ⊢ Γ,⊡+Π ⇒◦ χ

π0

Γ,⊡+Π ⇒ϕ □+χ
□+
fΣ,□Γ,□+Π ⇒s □+χ,∆

If π is:

τ0 ⊢ Γ,⊡+Π ⇒◦ ϕ τ1 ⊢ Γ,⊡+Π ⇒ϕ □+ϕ
□+
uΣ,□Γ,□+Π ⇒s □+ϕ,∆,□+χ,□+χ

then it maps to

τ0 ⊢ Γ,⊡+Π ⇒◦ ϕ τ1 ⊢ Γ,⊡+Π ⇒ϕ □+ϕ
□+
uΣ,□Γ,□+Π ⇒s □+ϕ,∆,□+χ

If π is:

τ0 ⊢ Γ,⊡+Π ⇒◦ χ τ1 ⊢ Γ,⊡+Π ⇒χ □+χ
□+
uΣ,□Γ,□+Π ⇒s □+χ,∆,□+χ

then it maps to

τ0 ⊢ Γ,⊡+Π ⇒◦ χ τ1 ⊢ Γ,⊡+Π ⇒χ □+χ
□+
uΣ,□Γ,□+Π ⇒s □+χ,∆

π0

Γ ⇒s ∆,□+χ,□+χ, ϕ

π1

ϕ,Γ ⇒s ∆,□+χ,□+χ
Cut

Γ ⇒s ∆,□+χ,□+χ

maps to
rctr□+χ(π0)

Γ ⇒s ∆,□+χ, ϕ

rctr□+χ(π1)

ϕ,Γ ⇒s ∆,□+χ
Cut

Γ ⇒s ∆,□+χ

■

Lemma 33. The function rctr□+χ is strongly preserving.
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C Inversion

C.1 Inversion of ⊥

Definition 34. Given π ⊢ Γ ⇒s ∆,⊥ in G∞
ℓ K+

s we can define, by recursion in the local
height and cases in the last rule apply, the proof inv⊥(π) proof of Γ ⇒s ∆ in G∞

ℓ K+
s as:

Ax
Γ, p⇒s p,∆,⊥ 7→ Ax

Γ, p⇒s p,∆

Ax-⊥
Γ,⊥ ⇒s ∆,⊥ 7→ Ax-⊥

Γ, p,⊥ ⇒s ∆

π0
Γ ⇒s ∆,⊥, ϕ

π1
Γ, ψ ⇒s ∆,⊥ →L

Γ, ϕ→ ψ ⇒s ∆,⊥
7→

inv⊥(π0)
Γ ⇒s ∆, ϕ

inv⊥(π1)
Γ, ψ ⇒s ∆ →L

Γ, ϕ→ ψ ⇒s ∆

π0
Γ, ϕ⇒s ψ,∆,⊥ →R

Γ ⇒s ϕ→ ψ,∆,⊥
7→

inv⊥(π0)
Γ, ϕ⇒s ψ,∆ →R

Γ ⇒s ϕ→ ψ,∆

τ ⊢ Γ,⊡+Π ⇒◦ ϕ
□

Σ,□Γ,□+Π ⇒s □ϕ,∆,⊥
7→ τ ⊢ Γ,⊡+Π ⇒◦ ϕ

□
Σ,□Γ,□+Π ⇒s □ϕ,∆

If π is:

τ ⊢ Γ,⊡+Π ⇒◦ ϕ

π0

Γ,⊡+Π ⇒ϕ □+ϕ
□+
fΣ,□Γ,□+Π ⇒s □+ϕ,∆,⊥

then it maps to

τ ⊢ Γ,⊡+Π ⇒◦ ϕ

π0

Γ,⊡+Π ⇒ϕ □+ϕ
□+
fΣ,□Γ,□+Π ⇒s □+ϕ,∆

If π is:
τ0 ⊢ Γ,⊡+Π ⇒◦ ϕ τ1 ⊢ Γ,⊡+Π ⇒ϕ □+ϕ

□+
uΣ,□Γ,□+Π ⇒s □+ϕ,∆,⊥

then it maps to

τ0 ⊢ Γ,⊡+Π ⇒◦ ϕ τ1 ⊢ Γ,⊡+Π ⇒ϕ □+ϕ
□+
uΣ,□Γ,□+Π ⇒s □+ϕ,∆

π0
Γ ⇒s ∆,⊥, χ

π1
χ,Γ ⇒s ∆,⊥ Cut

Γ ⇒s ∆,⊥
7→

inv⊥(π0)
Γ ⇒s ∆, χ

inv⊥(π1)
χ,Γ ⇒s ∆ Cut

Γ,⇒s ∆

■
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Lemma 35. The function inv⊥ is strongly preserving.

C.2 Inversion of → L

C.2.1 Left inversion

Definition 36. Given π ⊢ Γ, χ0 → χ1 ⇒s ∆ in G∞
ℓ K+

s we can define, by recursion in the
local height and cases in the last rule apply, the proof linv0χ0→χ1

(π) proof of Γ ⇒s ∆, χ0

in G∞
ℓ K+

s as:

Ax
Γ, χ0 → χ1, p⇒s p,∆ 7→ Ax

Γ, p⇒s p,∆, χ0

Ax-⊥
Γ, χ0 → χ1,⊥ ⇒s ∆ 7→ Ax-⊥

Γ,⊥ ⇒s ∆, χ0

If π is of shape:

π0
Γ, χ0 → χ1 ⇒s ∆, ϕ

π1
Γ, χ0 → χ1, ψ ⇒s ∆ →L

Γ, χ0 → χ1, ϕ→ ψ ⇒s ∆

we transform it to
linv0χ0→χ1

(π0)

Γ ⇒s ∆, χ0, ϕ

linv0χ0→χ1
(π1)

Γ, ψ ⇒s ∆, χ0 →L
Γ, ϕ→ ψ ⇒s ∆, χ0

If π is of shape:
π0

Γ ⇒s ∆, χ0

π1
Γ, χ1 ⇒s ∆ →L

Γ, χ0 → χ1 ⇒s ∆

the desired proof is π0.

π0
Γ, χ0 → χ1, ϕ⇒s ψ,∆ →R

Γ, χ0 → χ1 ⇒s ϕ→ ψ,∆
7→

linv0χ0→χ1
(π0)

Γ, ϕ⇒s ψ,∆, χ0 →R
Γ ⇒s ϕ→ ψ,∆, χ0

τ ⊢ Γ,⊡+Π ⇒◦ ϕ
□

Σ, χ0 → χ1,□Γ,□+Π ⇒s □ϕ,∆
7→ τ ⊢ Γ,⊡+Π ⇒◦ ϕ

□
Σ,□Γ,□+Π ⇒s □ϕ,∆, χ0

If π is:

τ ⊢ Γ,⊡+Π ⇒◦ ϕ

π0

Γ,⊡+Π ⇒ϕ □+ϕ
□+
fΣ, χ0 → χ1,□Γ,□+Π ⇒s □+ϕ,∆
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then it maps to

τ ⊢ Γ,⊡+Π ⇒◦ ϕ

π0

Γ,⊡+Π ⇒ϕ □+ϕ
□+
fΣ,□Γ,□+Π ⇒s □+ϕ,∆, χ0

If π is
τ0 ⊢ Γ,⊡+Π ⇒◦ ϕ τ1 ⊢ Γ,⊡+Π ⇒ϕ □+ϕ

□+
uΣ, χ0 → χ1,□Γ,□+Π ⇒s □+ϕ,∆

then it maps to

τ0 ⊢ Γ,⊡+Π ⇒◦ ϕ τ1 ⊢ Γ,⊡+Π ⇒ϕ □+ϕ
□+
uΣ,□Γ,□+Π ⇒s □+ϕ,∆, χ0

If π is
π0

Γ, χ0 → χ1 ⇒s ∆, ϕ

π1
ϕ,Γ, χ0 → χ1 ⇒s ∆ Cut

Γ, χ0 → χ1 ⇒s ∆

then it maps to
linv0χ0→χ1

(π0)

Γ ⇒s ∆, χ0, ϕ

linv0χ0→χ1
(π1)

ϕ,Γ ⇒s ∆, χ0 Cut
Γ,⇒s ∆, χ0

■

Lemma 37. The function linv0χ0→χ1
is strongly preserving.

C.2.2 Right inversion

Definition 38. Given π ⊢ Γ, χ0 → χ1 ⇒s ∆ in G∞
ℓ K+

s we can define, by recursion in the
local height and cases in the last rule apply, the proof linv1χ0→χ1

(π) proof of Γ, χ1 ⇒s ∆
in G∞

ℓ K+
s as:

Ax
Γ, χ0 → χ1, p⇒s p,∆ 7→ Ax

Γ, χ1, p⇒s p,∆

Ax-⊥
Γ, χ0 → χ1,⊥ ⇒s ∆ 7→ Ax-⊥

Γ, χ1,⊥ ⇒s ∆

If π is of shape:
π0

Γ, χ0 → χ1 ⇒s ∆, ϕ

π1
Γ, χ0 → χ1, ψ ⇒s ∆ →L

Γ, χ0 → χ1, ϕ→ ψ ⇒s ∆

we transform it to
linv1χ0→χ1

(π0)

Γ, χ1 ⇒s ∆, ϕ

linv1χ0→χ1
(π1)

Γ, χ1, ψ ⇒s ∆ →L
Γ, χ1, ϕ→ ψ ⇒s ∆
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If π is of shape:
π0

Γ ⇒s ∆, χ0

π1
Γ, χ1 ⇒s ∆ →L

Γ, χ0 → χ1 ⇒s ∆

the desired proof is π1.

π0
Γ, χ0 → χ1, ϕ⇒s ψ,∆ →R

Γ, χ0 → χ1 ⇒s ϕ→ ψ,∆
7→

linv1χ0→χ1
(π0)

Γ, χ1, ϕ⇒s ψ,∆ →R
Γ, χ1 ⇒s ϕ→ ψ,∆

τ ⊢ Γ,⊡+Π ⇒◦ ϕ
□

Σ, χ0 → χ1,□Γ,□+Π ⇒s □ϕ,∆
7→ τ ⊢ Γ,⊡+Π ⇒◦ ϕ

□
Σ, χ1,□Γ,□+Π ⇒s □ϕ,∆

If π is:

τ ⊢ Γ,⊡+Π ⇒◦ ϕ

π0

Γ,⊡+Π ⇒ϕ □+ϕ
□+
fΣ, χ0 → χ1,□Γ,□+Π ⇒s □+ϕ,∆

then it maps to

τ ⊢ Γ,⊡+Π ⇒◦ ϕ

π0

Γ,⊡+Π ⇒ϕ □+ϕ
□+
fΣ, χ1,□Γ,□+Π ⇒s □+ϕ,∆

If π is
τ0 ⊢ Γ,⊡+Π ⇒◦ ϕ τ1 ⊢ Γ,⊡+Π ⇒ϕ □+ϕ

□+
uΣ, χ0 → χ1,□Γ,□+Π ⇒s □+ϕ,∆

then it maps to

τ0 ⊢ Γ,⊡+Π ⇒◦ ϕ τ1 ⊢ Γ,⊡+Π ⇒ϕ □+ϕ
□+
uΣ, χ1,□Γ,□+Π ⇒s □+ϕ,∆

If π is
π0

Γ, χ0 → χ1 ⇒s ∆, ϕ

π1
ϕ,Γ, χ0 → χ1 ⇒s ∆ Cut

Γ, χ0 → χ1 ⇒s ∆

then it maps to
linv1χ0→χ1

(π0)

Γ, χ1 ⇒s ∆, ϕ

linv1χ0→χ1
(π1)

ϕ,Γ, χ1 ⇒s ∆ Cut
Γ, χ1 ⇒s ∆

■

Lemma 39. The function linv1χ0→χ1
is strongly preserving.
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C.3 Inversion of → R

Definition 40. Given π ⊢ Γ ⇒s χ0 → χ1,∆ in G∞
ℓ K+

s we can define, by recursion
in the local height and cases in the last rule apply, the proof rinvχ0→χ1(π) proof of
Γ, χ0 ⇒s ∆, χ1 in G∞

ℓ K+
s as:

Ax
Γ, p⇒s p,∆, χ0 → χ1

7→ Ax
Γ, χ0, p⇒s p,∆, χ1

Ax-⊥
Γ,⊥ ⇒s ∆, χ0 → χ1

7→ Ax-⊥
Γ, χ0,⊥ ⇒s ∆, χ1

If π is of shape:

π0
Γ ⇒s ∆, χ0 → χ1, ϕ

π1
Γ, ψ ⇒s ∆, χ0 → χ1 →L

Γ, ϕ→ ψ ⇒s ∆, , χ0 → χ1

we transform it to

rinvχ0→χ1(π0)

Γ, χ0 ⇒s ∆, χ1, ϕ

rinvχ0→χ1(π1)

Γ, χ0, ψ ⇒s ∆, χ1 →L
Γ, χ0, ϕ→ ψ ⇒s ∆, χ1

π0
Γ, ϕ⇒s ψ,∆, χ0 → χ1 →R

Γ ⇒s ϕ→ ψ,∆, χ0 → χ1

7→
rinvχ0→χ1(π0)

Γ, χ0, ϕ⇒s ψ,∆, χ1 →R
Γ, χ0 ⇒s ϕ→ ψ,∆, χ1

π0
Γ, χ0 ⇒s χ1,∆ →R

Γ ⇒s χ0 → χ1,∆

the desired proof is π0.

τ ⊢ Γ,⊡+Π ⇒◦ ϕ
□

Σ,□Γ,□+Π ⇒s □ϕ,∆, χ0 → χ1

7→ τ ⊢ Γ,⊡+Π ⇒◦ ϕ
□

Σ, χ0,□Γ,□+Π ⇒s □ϕ,∆, χ1

If π is:

τ ⊢ Γ,⊡+Π ⇒◦ ϕ

π0

Γ,⊡+Π ⇒ϕ □+ϕ
□+
fΣ,□Γ,□+Π ⇒s □+ϕ,∆, χ0 → χ1

then it maps to

τ ⊢ Γ,⊡+Π ⇒◦ ϕ

π0

Γ,⊡+Π ⇒ϕ □+ϕ
□+
fΣ, χ0,□Γ,□+Π ⇒s □+ϕ,∆, χ1
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If π is
τ0 ⊢ Γ,⊡+Π ⇒◦ ϕ τ1 ⊢ Γ,⊡+Π ⇒ϕ □+ϕ

□+
uΣ,□Γ,□+Π ⇒s □+ϕ,∆, χ0 → χ1

then it maps to

τ0 ⊢ Γ,⊡+Π ⇒◦ ϕ τ1 ⊢ Γ,⊡+Π ⇒ϕ □+ϕ
□+
uΣ, χ0,□Γ,□+Π ⇒s □+ϕ,∆, χ1

If π is
π0

Γ ⇒s ∆, , χ0 → χ1, ϕ

π1
ϕ,Γ ⇒s ∆, χ0 → χ1 Cut

Γ ⇒s ∆, χ0 → χ1

then it maps to
rinvχ0→χ1(π0)

Γ, χ0 ⇒s ∆, χ1, ϕ

rinvχ0→χ1(π1)

ϕ,Γ, χ0 ⇒s ∆, χ1 Cut
Γ, χ0 ⇒s ∆, χ1

■

Lemma 41. The function rinvχ0→χ1 is strongly preserving.
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D Cut reductions

Here we display all the cut-reductions we are going to use. We will write cuti with i ∈ N
to have a way to refer to each instance of cut since when we use the cut-reductions in
proofs, it may be the case that we leave cuts as cuts or that we replace them by some
proof provided by cut-admissibility.

We notice that the cut reductions of this section provides all possible cut reductions when
we have a π ⊢ Γ ⇒s ∆, χ and τ ⊢ χ,Γ ⇒s ∆ for an arbitrary χ (the cut formula). In case
χ is of a particular shape (e.g. a propositional variable or a box formula) we will mention
explicitely in the proof which are the cut reductions that appear. We are prepared to
write all the cut reductions:

D.1 Labeling and cut formula coincides

Let χ = □+χ0 and s = χ0. Since χ,Γ ⇒s ∆ is the conclusion of τ and s is a formula,
we know that □+s = □+χ0 must appear in ∆.6 Then ∆ = ∆0, χ and the conclusion of
π would be Γ ⇒s ∆0,□+χ0, χ, i.e. Γ ⇒s ∆0, χ, χ.

We have the cut reduction

π
Γ ⇒s ∆0, χ, χ

τ
χ,Γ ⇒s ∆0, χ

7→ rctr□+χ0
(π)

Γ ⇒s ∆0, χ

From now own we assume that either χ is not of shape □+χ0 or if it is then s ̸= χ0.

D.2 Axiomatic cases

Assume that either π or τ is axiomatic.

Axiomatic character is in side formula

Γ, p⇒s p,∆, χ
τ

χ,Γ, p⇒s p,∆
7→ Γ, p⇒s p,∆

π
Γ, p⇒s p,∆, χ χ,Γ, p⇒s p,∆ 7→ Γ, p⇒s p,∆

Γ,⊥ ⇒s ∆, χ
τ

χ,Γ,⊥ ⇒s ∆
7→ Γ,⊥ ⇒s p,∆

π
Γ,⊥ ⇒s ∆, χ χ,Γ,⊥ ⇒s ∆ 7→ Γ,⊥ ⇒s p,∆

Axiomatic character is in the cut formula

Γ, p⇒s ∆, p
τ

p,Γ, p⇒s ∆
7→ lctrp(τ)

Γ, p⇒s ∆

6We remember that, by definition of annotated sequent, if Γ ⇒ϕ ∆ then □+ϕ must occur in ∆.
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π
Γ ⇒s p,∆, p p,Γ ⇒s p,∆ 7→ rctrp(π)

Γ ⇒s p,∆

π
Γ ⇒s ∆,⊥ ⊥,Γ ⇒s ∆ 7→ inv⊥(π)

Γ ⇒s ∆

From now own we assume that neither π nor τ is axiomatic, so π and τ have each a
principal formula.

D.3 Principal reduction

Assume the cut formula is principal in π and τ . Then χ = χ0 → χ1 and the cut reduction
has shape

π0
χ0,Γ ⇒s ∆, χ1 →R

Γ ⇒s ∆, χ0 → χ1

τ0
Γ ⇒s ∆, χ0

τ1
χ1,Γ ⇒s ∆ →L

χ0 → χ1,Γ ⇒s ∆
7−→

wk(τ0)
Γ ⇒s ∆, χ1, χ0

π0
χ0,Γ ⇒s ∆, χ1 cut1

Γ ⇒s ∆, χ1

τ1
χ1,Γ ⇒s ∆ cut2

Γ ⇒s ∆

D.4 Commutative implication cases

Assume the cut formula is not principal in π or τ and the principal formula where the
cut formula is not principal is an implication. The cut reduction has 4 possible shapes:

π0
Γ, ϕ⇒s ψ,∆, χ →R

Γ ⇒s ϕ→ ψ,∆, χ

τ
χ,Γ ⇒s ϕ→ ψ,∆

7−→

π0
Γ, ϕ⇒s ψ,∆, χ

rinvϕ→ψ(τ)

χ,Γ, ϕ⇒s ψ,∆ cut1
Γ, ϕ⇒s ψ,∆ → R

Γ ⇒s ϕ→ ψ,∆

π0
Γ ⇒s ∆, ϕ, χ

π1
Γ, ψ ⇒s ∆, χ →L

Γ, ϕ→ ψ ⇒s ∆, χ

τ
χ,Γ, ϕ→ ψ ⇒s ∆

7−→
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π0
Γ ⇒s ∆, ϕ, χ

inv0ϕ→ψ(τ)

χ,Γ ⇒s ∆, ϕ cut1
Γ ⇒s ∆, ϕ

π1
Γ, ψ ⇒s ∆, χ

inv1ϕ→ψ(τ)

χ,Γ, ψ ⇒s ∆ cut2
Γ, ψ ⇒s ∆ →L

Γ, ϕ→ ψ ⇒s ∆

π
Γ ⇒s ϕ→ ψ,∆, χ

τ0
χ,Γ, ϕ⇒s ψ,∆ →R
χ,Γ ⇒s ϕ→ ψ,∆

7−→

rinvϕ→ψ(π)

Γ, ϕ⇒s ψ,∆, χ

τ0
χ,Γ, ϕ⇒s ψ,∆ cut1

Γ, ϕ⇒s ψ,∆ → R
Γ ⇒s ϕ→ ψ,∆

π
Γ, ϕ→ ψ ⇒s ∆, χ

τ0
χ,Γ ⇒s ∆, ϕ

τ1
χ,Γ, ψ ⇒s ∆ →L

χ,Γ, ϕ→ ψ ⇒s ∆

7−→

inv0ϕ→ψ(π)

Γ ⇒s ∆, ϕ, χ

τ0
χ,Γ ⇒s ∆, ϕ cut1

Γ ⇒s ∆, ϕ

inv1ϕ→ψ(π)

Γ, ψ ⇒s ∆, χ

τ1
χ,Γ, ψ ⇒s ∆ cut2

Γ, ψ ⇒s ∆ →L
Γ, ϕ→ ψ ⇒s ∆

D.5 Modal cases

Assume the cut formula is not principal in π or τ and where the cut formula is not
principal, the principal formula is of shape □ϕ or □+ϕ. So where the cut formula is not
principal the last rule is either □,□+

f or □+
u .

D.5.1 Weakening

If the cut formula belongs to the weakening part where the cut-formula is not principal,
then it is trivial to eliminate the cut: just keep that proof changing the weakening part
to not include the cut-formula.

D.5.2 Commutative

We can assume that the cut formula is not principal with last rule either □,□+
f or □+

u

occurs at τ since if it occurs at π it would be in the weakening part. In addition, to not
occur at the weakening part of the LHS of τ the cut formula must be of shape □χ0 or
□+χ0. In π we have two options, either the cut-formula is principal or not.
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If it were not principal, then the principal formula of π is of shape ϕ → ψ, □ϕ or □+ϕ.
The first case was already covered in Subsection D.4 and the other two will provoke that
the cut formula belongs to the weakening part of a modal rule, which we covered in
Subsubsection D.5.1. So we can safely assume that χ is principal in π and in addition,
since if χ = □+χ0 then s ̸= χ0 (by Subsection D.1), we know that the last rule applied
at π is either □ or □+

u . This leaves six cases depending on the last rule of π and the last
rule of τ .

In all the subsequent cases we are going to have Σ0,Σ1,Γ0,Γ1,∆0,∆1 such that Σ0,□Γ0,□+∆0 =
Σ1,□Γ1,□+∆1. In all of these we define Γ2 = Γ0, (Γ1 \ Γ0) = Γ1, (Γ0 \ Γ1), ∆2 =
∆0, (∆1 \∆0) = ∆1, (∆0 \∆1) and Σ2 as the only multiset such that Σ2,□Γ2,□+∆2 =
Σ0,□Γ0,□+∆0 = Σ1,□Γ1,□+∆1.

34



□
-□

re
du

ct
io

n.
π
0
⊢
Γ
0
,⊡

+
Π

0
⇒

◦
χ
0

□
Σ
0
,□

Γ
0
,□

+
Π

0
⇒
s
□
ϕ
,∆
,□
χ
0

τ 0
⊢
χ
0
,Γ

1
,⊡

+
Π

1
⇒

◦
ϕ

□
□
χ
0
,Σ

1
,□

Γ
1
,□

+
Π

1
⇒
s
□
ϕ
,∆

7−→

cu
t 1
(w

k(
π
0
),

w
k(
τ 0
))

⊢
Γ
2
,⊡

+
Π

2
⇒

◦
ϕ

□
Σ
2
,□

Γ
2
,□

+
Π

2
⇒
s
□
ϕ
,∆

□
-□

+ u
re

du
ct

io
n.

π
0
⊢
Γ
0
,⊡

+
Π

0
⇒

◦
χ
0

□
Σ
0
,□

Γ
0
,□

+
Π

0
⇒
s
□

+
ϕ
,∆
,□
χ
0

τ 0
⊢
χ
0
,Γ

1
,⊡

+
Π

1
⇒

◦
ϕ

τ 1
⊢
χ
0
,Γ

1
,⊡

+
Π

1
⇒
ϕ
□

+
ϕ

□
+ u

□
χ
0
,Σ

1
,□

Γ
1
,□

+
Π

1
⇒
s
□

+
ϕ
,∆

7−→

cu
t 1
(w

k(
π
0
),

w
k(
τ 0
))

⊢
Γ
2
,⊡

+
Π

2
⇒

◦
ϕ

cu
t 2
(w

k(
π
0
)ϕ
,w

k(
τ 1
))

⊢
Γ
2
,⊡

+
Π

2
⇒

◦
□

+
ϕ

□
+ u

Σ
2
,□

Γ
2
,□

+
Π

2
⇒
s
□

+
ϕ
,∆

□
-□

+ f
re

du
ct

io
n.

π
0
⊢
Γ
0
,⊡

+
Π

0
⇒

◦
χ
0

□
Σ
0
,□

Γ
0
,□

+
Π

0
⇒
s
□

+
ϕ
,∆
,□
χ
0

τ 0
⊢
χ
0
,Γ

1
,⊡

+
Π

1
⇒

◦
ϕ

τ 1

χ
0
,Γ

1
,⊡

+
Π

1
⇒
ϕ
□

+
ϕ

□
+ u

□
χ
0
,Σ

1
,□

Γ
1
,□

+
Π

1
⇒
s
□

+
ϕ
,∆

7−→

cu
t 1
(w

k(
π
0
),

w
k(
τ 0
))

⊢
Γ
2
,⊡

+
Π

2
⇒

◦
ϕ

w
k(
π
0
)ϕ

Γ
2
,⊡

+
Π

2
⇒
ϕ
□

+
ϕ
,χ

0

w
k(
τ 1
)

χ
0
,Γ

2
,⊡

+
Π

2
⇒
ϕ
□

+
ϕ

cu
t 2

Γ
2
,⊡

+
Π

2
⇒
ϕ
□

+
ϕ

□
+ f

Σ
2
,□

Γ
2
,□

+
Π

2
⇒
s
□

+
ϕ
,∆

35



□
+ u
-□

re
du

ct
io

n. π
0
⊢
Γ
0
,⊡

+
Π

0
⇒

◦
χ
0

π
1
⊢
Γ
0
,⊡

+
Π

0
⇒
ϕ
□

+
χ
0

□
+ u

Σ
0
,□

Γ
0
,□

+
Π

0
⇒
s
□
ϕ
,∆
,□

+
χ
0

τ 0
⊢
⊡

+
χ
0
,Γ

1
,⊡

+
Π

1
⇒

◦
ϕ

□
□

+
χ
0
,Σ

1
,□

Γ
1
,□

+
Π

1
⇒
s
□
ϕ
,∆

7−→

ρ
0
⊢
Γ
2
,⊡

+
Π

2
⇒

◦
ϕ

□
□
Γ
2
,□

+
Π

2
⇒

◦
□
ϕ
,∆

w
he

re
ρ
0
=

cu
t 2
(w

k(
π
0
),

cu
t 1
(w

k(
π
1
)◦
,w

k(
τ 0
))
).

□
+ u
-□

+ u
re

du
ct

io
n.

π
0
⊢
Γ
0
,⊡

+
Π

0
⇒

◦
χ
0

π
1
⊢
Γ
0
,⊡

+
Π

0
⇒

χ
0
□

+
χ
0

□
+ u

Σ
0
,□

Γ
0
,□

+
Π

0
⇒

s
□

+
ϕ
,∆

,□
+
χ
0

τ 0
⊢
⊡

+
χ
0
,Γ

1
,⊡

+
Π

1
⇒

◦
ϕ

τ 1
⊢
⊡

+
χ
0
,Γ

1
,⊡

+
Π

1
⇒

ϕ
□

+
ϕ

□
+ u

□
+
χ
0
,Σ

1
,□

Γ
1
,□

+
Π

1
⇒

s
□

+
ϕ
,∆

7−→

ρ
0
⊢
Γ
2
,⊡

+
Π

2
⇒

◦
ϕ

ρ
1
⊢
Γ
2
,⊡

+
Π

2
⇒
ϕ
□

+
ϕ

□
+ u

Σ
2
,□

Γ
2
,□

+
Π

2
⇒
s
□

+
ϕ

w
he

re
ρ
0
=

cu
t 2
(w

k(
π
0
),

cu
t 1
(w

k(
π
1
)◦
,w

k(
τ 0
))
)

an
d
ρ
1
=

cu
t 4
(w

k(
π
0
)ϕ
,c

ut
3
(w

k(
π
1
)ϕ
,w

k(
τ 1
))
)

36



□
+ u
-□

+ f
re

du
ct

io
n.

π
0
⊢
Γ
0
,⊡

+
Π

0
⇒

◦
χ
0

π
1
⊢
Γ
0
,⊡

+
Π

0
⇒

χ
0
□

+
χ
0

□
+ u

Σ
0
,□

Γ
0
,□

+
Π

0
⇒

s
□

+
ϕ
,∆

,□
+
χ
0

τ 0
⊢
⊡

+
χ
0
,Γ

1
,⊡

+
Π

1
⇒

◦
ϕ

τ 1

⊡
+
χ
0
,Γ

1
,⊡

+
Π

1
⇒

ϕ
□

+
ϕ

□
+ f

□
+
χ
0
,Σ

1
,□

Γ
1
,□

+
Π

1
⇒

s
□

+
ϕ
,∆

7−→

ρ
0
⊢
Γ
2
,⊡

+
Π

2
⇒

◦
ϕ

w
k(
π
0
)ϕ

Γ
2
,⊡

+
Π

2
⇒

ϕ
□

+
ϕ
,χ

0

w
k(
π
1
)ϕ

χ
0
,Γ

2
,⊡

+
Π

2
⇒

ϕ
□

+
ϕ
,□

+
χ
0

w
k(
τ 1
)

⊡
+
χ
0
,Γ

2
,⊡

+
Π

2
⇒

ϕ
□

+
ϕ

cu
t 3

χ
0
,Γ

2
,⊡

+
Π

2
⇒

ϕ
□

+
ϕ

cu
t 4

Γ
2
,⊡

+
Π

2
⇒

ϕ
□

+
ϕ

□
+ f

Σ
2
,□

Γ
2
,□

+
Π

2
⇒

s
□

+
ϕ

w
he

re
ρ
0
=

cu
t 2
(w

k(
π
0
),

cu
t 1
(w

k(
π
1
)◦
,w

k(
τ 0
))
).

37



References
[1] Matteo Acclavio, Gianluca Curzi, and Giulio Guerrieri. Infinitary cut-elimination

via finite approximations (extended version). 2024. arXiv: 2308.07789 [cs.LO].
url: https://arxiv.org/abs/2308.07789.

[2] Bahareh Afshari and Johannes Kloibhofer. “Cut Elimination for Cyclic Proofs: A
Case Study in Temporal Logic”. In: Proceedings Twelfth International Workshop on
Fixed Points in Computer Science. Electronic Proceedings in Theoretical Computer
Science, to appear.

[3] Bahareh Afshari, Graham E. Leigh, and Guillermo Menéndez Turata. Demystifying
µ. 2024. arXiv: 2401.01096 [math.LO]. url: https://arxiv.org/abs/2401.
01096.

[4] Anupam Das and Damien Pous. “Non-Wellfounded Proof Theory For (Kleene+Action)
(Algebras+Lattices)”. In: 27th EACSL Annual Conference on Computer Science
Logic (CSL 2018). Ed. by Dan R. Ghica and Achim Jung. Vol. 119. Leibniz Inter-
national Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2018, 19:1–19:18. isbn: 978-3-95977-088-0. doi:
10.4230/LIPIcs.CSL.2018.19. url: https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.CSL.2018.19.

[5] Ioannis Kokkinis and Thomas Studer. “Cyclic Proofs for Linear Temporal Logic”.
In: Concepts of Proof in Mathematics, Philosophy, and Computer Science. Ed.
by Dieter Probst and Peter Schuster. De Gruyter, 2016, pp. 171–192. doi: doi:
10.1515/9781501502620-011.

[6] Alexis Saurin. “A Linear Perspective on Cut-Elimination for Non-wellfounded Se-
quent Calculi with Least and Greatest Fixed-Points”. In: Automated Reasoning with
Analytic Tableaux and Related Methods. Ed. by Revantha Ramanayake and Josef
Urban. Cham: Springer Nature Switzerland, 2023, pp. 203–222. isbn: 978-3-031-
43513-3.

[7] Yury Savateev and Daniyar Shamkanov. “Cut Elimination for the Weak Modal
Grzegorczyk Logic via Non-well-Founded Proofs”. In: Logic, Language, Informa-
tion, and Computation. Ed. by Rosalie Iemhoff, Michael Moortgat, and Ruy de
Queiroz. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019, pp. 569–583. isbn:
978-3-662-59533-6.

[8] Yury Savateev and Daniyar Shamkanov. “Non-Well-Founded Proofs for the Grze-
gorczyk Modal Logic”. In: The Review of Symbolic Logic 14 (Apr. 2018). doi:
10.1017/S1755020319000510.

[9] Daniyar Shamkanov. A realization theorem for the modal logic of transitive closure
K+. 2024. arXiv: 2402.04027 [math.LO]. url: https://arxiv.org/abs/2402.
04027.

[10] Daniyar Shamkanov. On structural proof theory of the modal logic K+ extended
with infinitary derivations. 2023. arXiv: 2310.10309 [math.LO]. url: https://
arxiv.org/abs/2310.10309.

[11] Borja Sierra Miranda, Thomas Studer, and Lukas Zenger. “Coalgebraic Proof Trans-
lations of Non-Wellfounded Proofs”. In: Advances in Modal Logic. Ed. by Agata

38



Ciabattoni, David Gabelaia, and Igor Sedlar. Vol. 15. College Publications, 2024,
pp. 527–548.

39


