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Abstract—Reasoning on the behavior of software systems is
challenging, especially in critical domains such as aerospace.
Transitioning from natural language to formal specifications
enables long-pursued activities such as modeling, synthesis, and
verification. Temporal logics are often used in this regard, each
with different operators, expressiveness or associated implemen-
tations. However, a significant gap exists between the theoretical
capabilities of the logics applied in formal methods and the
practical needs for specifying real-world requirements. This
paper addresses this gap through a case study of SpaceWire,
a standard specification for a data-handling communication
protocol often adopted on spacecraft and other on-board sys-
tems. We extract 89 software requirements exhibiting temporal
behavior and transcribe them into logic-based formalizations
using different established temporal logics, maximizing natural
encoding. We analyze the suitability of the chosen logics for
formalizing the selected software requirements to reason about
potential implications for both researchers and practitioners.

Index Terms—requirements, specification, temporal logics

I. INTRODUCTION

Formal methods offer a systematic approach to specify-
ing, verifying, and reasoning about software behaviors by
transitioning from informal, natural language requirements
to formal, logic-based representations [1]–[5]. In particular,
temporal logics [1], [2], [6], [7] have been widely adopted
for software-intensive systems where time and order of oper-
ations are critical, such as embedded systems [8], distributed
systems [9], and real-time systems [10]–[12]. Since Pnueli’s
seminal work on Linear Temporal Logic (LTL) [13], a plethora
of temporal logics have been proposed [14]–[16], addressing
various limitations and challenges associated with different
types of systems, properties, and expressiveness required.

Despite the expanding body of scientific literature on the
one hand, and numerous success stories highlighting the suc-
cessful adoption of formal methods in industrial practice [17],
[18] on the other hand, transitioning from natural language
requirements to logic-based representations remains challeng-
ing. To compensate, recent research efforts have increasingly
focused on providing guidance to practitioners and engineers
in mastering such transition, aiming to make temporal logic-
based reasoning more accessible and practical. Proposals range
from auxiliary utilities such as user-friendly notations [19]
or specification patterns [20], [21] to generating logic formu-
lae [3]–[5], [22].

However, all of these approaches eventually target a specific
logical framework serving as basis of a dedicated method or
tool. Even user-friendly notations are designed to map intu-
itively to operators and constructs of some underlying logics,
representing syntactic sugar on top of the respective logical
framework. More generally, the vast majority of the literature
can be classified as solution-oriented, falling short in providing
practical, problem-oriented guidance for selecting the most
suitable temporal logic for specific tasks or domains in the first
place. Both standard textbooks and research papers usually
work with toy examples for the sake of illustration, where an
example is artificially constructed such that it suits to explain
a specific solution. While such examples are carefully chosen
for didactic reasons, practitioners usually face a situation just
the other way round: They start with a problem and seek a
suitable solution.

The absence of problem-oriented guidance means engineers
may lack the expertise to evaluate which logic is best suited
for their requirements, increasing the risk of suboptimal or er-
roneous specifications. Conversely, researchers need problem-
oriented evidence to align the expressive power of temporal
logics, including supporting tools, and the practical needs
of engineers in different domains. Specification is regarded
as a critical bottleneck, particularly for aerospace, and other
autonomous systems [23].

In this paper, we tackle the challenge of transitioning
from natural language requirements to logic-based representa-
tions by taking a problem-oriented view through the lens of
SpaceWire [24], a standard specification for a data-handling
communication protocol often adopted on spacecraft and other
on-board aerospace systems [25].

In a first phase, we systematically extract a comprehensive
set of functional software requirements from the SpaceWire
standard, each of which exhibits temporal behavior that is
critical to the correct functioning of the system.

In a second phase, we seek to identify a natural logic-based
formalization for each of these text-based requirement. This
phase is conducted by a logician, with the aim of collecting
and classifying arguments that justify the selection without
being biased by practical constraints such as tool support,
reasoning complexity etc., and seeking the most natural for-
malization.
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The third and last phase is dedicated to quantitatively ana-
lyzing these natural formalizations obtained from the previous
phase. Guided by two research questions, we analyze the
distribution of logics employed to transcribe the SpaceWire
requirements, and explore potential translations between the
selected logical frameworks. Additionally, we shift our view
towards a more practical perspective by assessing what we
term the engineering complexity of our specifications in terms
of the syntactical complexity of the respective temporal logic
formulae, aiming to identify cases where a formalization
becomes overly complex or intricate, raising concerns about
its practical utility in industrial contexts. To automate the
assessment of the obtained requirement formalizations, we
introduce tlparser, a tool tailored for harvesting statistical
data from logical formulae.

Through this analysis, we aim to assess the suitability of
each chosen logic for formalizing real-world requirements,
highlighting both strengths and limitations of these logics in
a practical context. Together with the presented methodology
and tlparser, we enable replicable “fingerprinting” of re-
quirement documents. By reflecting on the challenges encoun-
tered during the formalization process, we provide insights that
can benefit both researchers and software engineers, ultimately
contributing to the improvement of formal methods for prac-
tical use. Findings from this investigation serve as a reality
check as they offer a clearer understanding of how formal
methods utilizing temporal logics can be applied effectively
in the context of aerospace and other critical domains.

In summary, we present the following five contributions:
1) We extract all SpaceWire requirements having a temporal

notion and provide a natural formalization, including a
transparent justification for the selection of specific logics
to best fit each requirement.

2) We conduct a quantitative analysis on these formalized
requirements that examines (1a) the distribution of nat-
ural formalizations across different temporal logics, (1b)
their mutual translation potential, and (2) the engineering
complexity of the resulting logical formulae.

3) We interpret key insights derived from this quantitative
analysis and discuss their implications for both practition-
ers and researchers.

4) We introduce tlparser1, a tool designed for automated
reproduction of our quantitative analysis, ensuring repro-
ducibility and facilitating further research.

5) We provide an accompanying artifact1 that includes all
data generated during the SpaceWire case study, allowing
others to validate and build upon our work.

The remainder of this paper is structured as follows. Sec. II
introduces the SpaceWire requirement document and states the
extraction process of requirements with temporal behavior.
In Sec. III, we formalize the extracted requirements in the
most natural manner, providing justifications and reasons on
selecting candidate logical frameworks. Sec. IV presents quan-
titative analysis results of the gained formalizations, covering

1 Tool support and data package at doi.org/10.5281/zenodo.14764480.

the logics distribution, mutual translatability, and engineering
complexity. Sec. V discusses the obtained results and their
implications, followed by related work in Sec. VI. Finally,
Sec. VII concludes the paper alongside future work endeavors.

II. REQUIREMENTS IN SPACEWIRE

SpaceWire [24] is a standard specification for a data-
handling network often adopted on spacecraft and other on-
board systems. The protocol is standardized by the European
Space Agency (ESA) in collaboration with other international
space agencies (e.g., NASA, JAXA, and RKA) and is based on
the IEEE 1355 standard [26]. It is a full-duplex, bidirectional,
serial, point-to-point data link that employs differential signal-
ing to ensure high reliability. It contains precise requirements
to facilitate connections between various components such as
scientific instruments, memory, processors, downlink teleme-
try, and other sub-systems located on-board a spacecraft.
SpaceWire is widely used in space missions [27] for its high-
speed data transfer capabilities and robustness. While the
standard is heavily oriented towards hardware specifications,
it also delineates essential software requirements to ensure
seamless and reliable communication between on-board soft-
ware sub-systems. These requirements encompass protocol
implementation, device drivers, network management, error
handling, timing, synchronization, and interoperability.

For this work, we are interested in requirements about
behavior and thus focus on functional [28] requirements that
match the following two inclusion criteria:

• The requirement embodies a functional aspect concerning
the software system.

• The requirement contains a notion of temporal behavior,
as indicated by keywords such as always, before, after,
next, finally, eventually, until, etc.

Consequently, we excluded non-functional SpaceWire re-
quirements [24], such as “The line receiver shall maintain
correct operation for differential input voltages of up to
600 mV magnitude,” as they focus on performance rather
than defining software system behavior. Similarly, functional
requirements lacking a temporal aspect, such as “Zero or more
data characters at the front of a packet shall form a destination
address,” were excluded.

Our inclusion and exclusion criteria result in the extraction
of 89 requirements from the SpaceWire artifact investigated.
The extracted requirements, specified using natural language
(i.e., English), can be found in our replication package1.

III. FORMALIZING SPACEWIRE

After requirements extraction, we proceed to formalize them
in a natural manner by selecting suitable logical frameworks.
This section defines naturalism in formulae and outlines the
logical frameworks ultimately derived.

A. General Characteristics of Natural Formalization

Achieving a natural formalization of requirements is crucial
for ensuring clarity and precision in system specification, while

https://doi.org/10.5281/zenodo.14764480


minimizing unnecessary complexity. In general, the impor-
tance of balancing expressiveness and simplicity in temporal
logics has been recognized as an active area of research. The
concept of a natural process of formalization is investigated
from different perspectives, such as philosophical discus-
sions [29], existing approaches towards formalization [30], and
the automated formalization of requirements [31], [32].

While there is no universally accepted definition of natural-
ism in formalizing requirements, building on insights from the
literature, we adopt a pragmatic approach for the purpose of
this paper. The process of translating natural language require-
ments into logical formulae begins by identifying temporal op-
erators, which may be encoded explicitly or implicitly within
the requirement. For instance, explicit encoding occurs when
temporal behavior is directly addressed in the natural language,
making it straightforward to translate into formulae. Implicit
encoding, on the other hand, requires interpretation within a
given context, domain knowledge, or resolving ambiguities
caused by synonymous or vague wording.

Using this operators-centric approach, we declare a formal-
ization of a requirement as natural when the following three
characteristics apply:

1) The formalization is solely based on the temporal op-
erators used in the requirement, regardless of having a
previously selected logic in our mind.

2) The logic used is minimal, with just enough expressive-
ness to capture the requirement, prioritizing adequacy
over strength.

3) Compact formalizations are favored over longer ones,
given that they also support intuitive comprehension.

To further convey the meaning of natural formalizations,
consider the converse – a formalization where, e.g., one of the
characteristics above is not fulfilled. Firstly, a requirement may
point to solely LTL temporal operators but a more expressive
logic is employed to formalize it. Secondly, there may be the
case where an unusual, verbose formula is obtained, but a more
intuitive and succinct way exists. For example, the formula
using a constrained temporal operator □(0,n)A would be more
natural than writing the following construct:

A ∧ XA ∧ X (XA) ∧ · · · X (X (X (· · · X︸ ︷︷ ︸
n times

A))).

Beyond these characteristics of naturalness in logical formu-
lae, the granularity of atomic propositions (APs) is another key
factor in the translation, as it determines the level of detail at
which a requirement is formally represented. Again, we take a
pragmatic approach, striving for the finest granularity achiev-
able while maintaining the necessary level of coarseness. We
will exemplify this pragmatism later in this section.

B. Application to the Extracted SpaceWire Requirements

Applying our operators-centric approach of natural formal-
ization, we categorize the SpaceWire requirements according
to the operators used in the logical structure of the require-
ment. We present an excerpt of the formalized SpareWire
requirements in Table I, comprising a curated subset. These
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Fig. 1. Operator-centric approach to natural formalization: Logic framework
decision tree derived from formalizing SpaceWire requirements.

requirements, labeled as R1 to R9, serve as reference points
throughout the remainder of this paper. For the complete data
set we refer to the replication package.

Figure 1 depicts the decision tree developed during the
formalization of the extracted requirements. While not univer-
sally complete, it fully represents the process used to achieve
natural formalizations for the 89 SpaceWire requirements. In
the sequel, we explain the rationale and methodology behind
the construction of the decision tree, referring to the examples
shown in Table I for the sake of illustration.

Trivial global conditions. The simplest requirements we
identified are conditionals that are always true, and therefore
expressed by a single temporal operator □, conveying the
temporal notion of always (e.g., R1). We term those logically
simple structured requirements invariants (INV). Although the
invariants we found in SpaceWire may be further categorized
in more detail (e.g. always-only requirements, action steps
with no complex behavior, and event-condition-action require-
ments), we abstain from discussing these subcategories in this
paper as they are not relevant to the discussion on the level
of temporal logic.

Linear unconstrained behavior. Starting with R2 and R3,
the expressiveness of INV no longer suffices as these require-
ments specify additional temporal behavior, necessitating more
operators than just a single □. To this end, we employ LTL,
which has found diverse applications [13] and which is widely
used for formulating statements with a temporal aspect [1]. For
cases with additional temporal behavior, which is specified as
unconstrained, we introduce the next leaf node in the decision
tree, accounting for ♢ (eventually) and U (until) operators of
LTL. Note that we intentionally did not express the X (next)
in the decision tree path description leading to LTL as this
operator is unconstrained by definition.

Recalling the applied pragmatism on AP granularity level
outlined earlier, R4 serves as an underpinning example. We
encoded firstNullReceivedWithoutError intentionally as a sin-
gle AP as separating it in (firstNullReceived) ∧ (¬ error)
introduces a problem: if the first ‘Null’ is received with an
error, firstNullReceived would never hold again as subsequent
nulls would no longer be the first one, rendering the formula
unsatisfiable. This demonstrates the ‘as coarse grained as
necessary’ pragmatism applied here. Note that one could also
propose to use LTL with past operators (e.g., previously [33])



TABLE I
EXAMPLE FORMALIZATIONS OF SPACEWIRE REQUIREMENTS

Ref [Requirement ID] Requirement Text Operators Logic Formalization

R1 [1006] Null detection shall be enabled whenever the receiver
is enabled. □ INV

□((receiver enabled) →
(Null detection enabled))

R2
[2008] The data link layer shall not send any N-Chars to the
encoding layer until it has received one or more FCTs from
the encoding layer [. . . ].

□, U LTL
□(¬(send NChar) U

(FCT received))

R3
[2013] When the link is initialised or re-initialised, one FCT
shall be sent for every eight N-Chars that can be held in the
receive FIFO up to the maximum of seven FCTs.

□, X , U LTL

□((link state : (initialised ∨ reinitialised)) →
(((8 NChar held) → X (one FCT sent))

U (Num sent FCT ≤ 7)))

R4
[2037] The gotNull.indication primitive shall be passed to the
data link layer, when the first Null is received without any
errors after the receiver has been enabled.

□, X , □ LTL

□(receiverEnabled →
X (□(firstNullReceivedWithoutError)) →
(gotNullPassed))

R5

[5002] If the host system tries to send an interrupt acknowl-
edgement too soon after a corresponding interrupt code has
been received [. . . ] the result is indeterminate for that specific
interrupt. The new interrupt acknowledgement code that the
node sends can either be discarded by a router, or repeatedly
propagated through the network [. . . ].

□, X , U , □, □,
♢ LTL

□(((corresponding interrupt code received)

→ X¬(¬(send interrupt acknowledgement)

U(interrupt code propagated)))

→ (□(new interrupt code discard)

∨ □(♢(new interrupt code propagated))))

R6

[3014] The delay between the interrupt code arriving and
the interrupt acknowledgement being generated shall be less
than the maximum time determined for a node to generate an
interrupt acknowledgement code.

□, ♢I ,
I = interval MTLb

□((interrupt code arriving) →
♢(0,t)(interrupt ack) generated),

t ≤ max interrupt ack time

R7
[3001] The Link state machine shall leave the ErrorReset state
[. . . ] When the 6,4 µs timer is elapsed and LinkDisable is de-
asserted, move to the ErrorWait state.

□, ♢I ,
I = singleton MTLb

□((♢6.4µs(LinkDisable deasserted)

→ X (ErrorWait state))

R8 [4001] After a reset or disconnect (see clause 5.4.8) an output
port shall start operating at a data signaling rate of 10 ±1 Mb/s. □, X STL

□((reset ∨ disconnect) →
X ( 9 ≤ Sdata(t) ≤ 11))

R9 [4002] The SpaceWire output port shall operate at 10 ±1 Mb/s
until set to operate at a different data signaling rate. □, U STL

□((9 ≤ Sdata(t) ≤ 11)

U (set different rate))

to formalize the notion of first in R4. Then, the proposition
firstNullReceivedWithoutError could indeed be separated into
two APs, NullReceived and NoError previously. However, the
result would be overly complex and less natural.

The last requirement naturally formalized in LTL we se-
lected for being discussed in the paper is requirement R5. It
is noteworthy in our case study as it incorporates the notion
of “repeatedly”, which we capture using the unbounded ♢
(eventually) within a □ operator.

Handling bounds and different models of time. In cases
where a requirement includes constrained temporal opera-
tors, as in R6 and R7, LTL lacks the necessary expressive-
ness, pointing towards the family of Metric Temporal Logic
(MTL [7], [12], [34]). Informally, MTL can be seen as a
generalization of LTL in which temporal operators are replaced
by time-constrained versions. There exists a range of metric
temporal logics that account for expressing time boundaries,
typically added as a number or interval to temporal operators.

In terms of our natural formalization of SpaceWire require-
ments, we initially considered two prominent fragments of
MTL, known as Metric Interval Temporal Logic (MITL) and
Safety Metric Temporal Logic [14], [35] (MTLb, read as MTL
bounded) [14], [34]. In MTLb, temporal operators may be
augmented by bounded intervals only, often abbreviated by
using a notation with a single number. On the contrary, MITL
supports unbounded time intervals, indicated by endpoints at
infinity. For example, expressing a time interval such as (x,∞)
is possible in MITL, whereas in MTLb such intervals cannot
be expressed for ♢ and U operators.

Interestingly, none of the SpaceWire requirements we en-
countered involves constrained operators with unbounded ♢
and U operators. In sum, MTLb turned out to be suffi-
cient to naturally formalize all time-constrained SpaceWire
requirements considered in our study, using bounded intervals
(e.g., R6) and singleton numbers referring to exact time
points (e.g., R7). For the sake of completeness, though never



chosen in terms of our study, we include the MITL path with
unbounded intervals in our decision tree illustrated in Fig. 1.

Lastly, we note that MTL in general and MTLb in particular
may be defined based on different models of time, which
can be discrete or continuous [36] implying different seman-
tics [14], [37] (i.e., pointwise vs. continuous semantics). While
this did not influence the logics selection process in terms
of our natural formalization, we found pointwise semantics
sufficient for the SpaceWire case, as time constraints required
only natural numbers, with no need for real numbers.

Coping with signal rates and quantities. Last but not
least, certain requirements contain the concept of signal,
predicating over a signaling rate or quantity in each moment
of time. R8 and R9 exemplify this. Consequently, requirements
containing propositions on resetting signals or external action
on the signals are not contained in STL as they sufficiently
formalized in LTL (following our characteristics on natural
formalizations). To this end, we employ Signal Temporal Logic
(STL) [38], [39], where at any time point a real number
denoted by S(t) is assigned, capturing the signal amount in
t as the signal rate. Such requirements are deemed a special
case, yielding a branch in the decision process.

IV. QUANTITATIVE ANALYSIS OF FORMULAE

This section presents the results of a quantitative analysis
of the 89 formulae naturally specifying the 89 requirements
extracted from the SpaceWire document. The analysis was
guided by the following two research questions:

RQ1: What is the distribution of natural logics used
for the transcribed SpaceWire requirements, and can they be
mutually translated?

RQ2: What is the engineering complexity of the natural
formulae for a transcribed SpaceWire requirement and does it
differ among the logics?

The rationale behind RQ1 is twofold. First, by studying the
distribution of the natural formalizations over the respective
logical frameworks, we aim to spot general trends and outliers.
Second, we account for the fact that natural formalizations are
not necessarily the only possible ones. As noted at the end of
Section III-A, a time-bounded requirement is most naturally
formalized in MTLb but can also be translated into LTL. To
that end, we analyze whether a given formalized requirement
can also be translated into another logical framework. We
deem a given formalization as conditionally translatable if cer-
tain assumptions are required due to varying underlying tem-
poral models. As we are only considering translations within
the set of logics obtained during the formalization process, we
speak of mutual translatability. Note that the translatability of
each formalized requirement must be assessed c − 1 times,
where c is the number of distinct logical frameworks used in
the formalizations. Let further n be the number of formalized
requirements, a total of n(c− 1) translation decisions – each
classified as either yes, no, or conditional – must be made.

The second guiding research question RQ2 examines what
we term the engineering complexity of all natural formaliza-
tions across the logics. This term is used to distinguish our fo-

cus from computational complexity, which is not the subject of
this study. Specifically, we use the syntax structure of logical
formulae as a proxy for engineering complexity. To that end,
we analyze the abstract syntax tree (AST) of each formula,
collecting quantitative metrics characterizing the complexity
of the AST. Metrics include the level of nesting or AST
height (ASTH), counts of logical operators (LOPs), temporal
operators (TOPs), atomic propositions (APs), and comparison
operations (COPs) within the APs if such where appearing
in requirements treated. As we contemplate that engineering
complexity positively correlates with the diversity of operators
present in a given formula, we additionally determine the
Shannon entropy [40] to measure the diversity of LOPs and
TOPs across the different logics. COPs were intentionally
excluded, as they are typically abstracted away using APs.
For instance, in a 3-operator scenario, a formula that uses
the first and third operators once and the second operator
twice can be represented as the vector v = [1, 2, 1]. These
binned counts are then used to calculate the base 2 Shannon
entropy H(v) = −

∑
i pi log2(pi) where pi is the proportion

of each bin’s count relative to the total. The resulting entropy
H(v) = 1.5 indicates almost maximal entropy, reflecting close
to perfect operator diversity. Perfect diversity is reached in
uniform vectors, with vi > 0.

In order to address both research questions, we leverage
tlparser, a command line tool developed as part of this
work. It automates the parsing of temporal logic formulae,
extraction of statistical metrics, and generation of reporting
visualizations, ensuring reproducibility. It supports all opera-
tors relevant to the studied logics (detailed in the replication
package) and is designed to be easily extensible to accommo-
date additional operators and logics in the future.

For demonstration purposes, consider the Formula 1 below
as running example, being processed by the tlparser in
two steps.

□ (y ∧ (u = 9) → ♢ (¬y ∨ i < 3)) (1)

First, existing COPs (=, <) in each comparison instance
are counted and then resolved with letter replacements to
transform these instances into parsable APs (i.e. i < 3
becomes i gt 3). In the second step, the formula with resolved
comparison instances is parsed into an AST object which
allows to extract APs (i.e. i gt 3, u eq 9, and y), TOPs (G
and F or □ and ♢ respectively), and LOPs (∧, ∨, →, and
¬). Consequently, we harvest the statistical data of having
ASTH = 5, APs = 3, COPs = 2, LOPs = 4, and TOPs = 2.
The entropy of the LOPs and TOPs present in Formula 1
therefore yields ≈ 2.585.

A. Answer to RQ1

Fig. 2 shows the distribution of logics used to naturally
formalize the SpaceWire requirements and their mutual trans-
latability. In Subfigure (a), we observe that the majority of the
total n = 89 requirements can naturally be formulated as INV
(32) and LTL (39) expressions, followed by MTLb (15). Only
3 instances utilize the notion of signaling rates, resulting in
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an STL specification. Subfigures (b), (c), and (d) illustrate the
mutual translation potential among the set of employed logics
(listed in x-axes). In the case of SpaceWire, this set – which we
derived from the decision tree (cf. Fig. 1) – has a cardinality
of c = 4 which results n(c−1) = 89(4−1) = 267 translation
questions to be posed. Given the three possible outcomes of
answers, we denote the answer classes as ti, with i ∈ {1, 2, 3}
and

∑3
i=1 ti = 267.

According to Subfigure (b), translations are possible to LTL
in 47 cases and to MTLb in 56 cases, indicating that more
than half of the considered requirements can be formalized
– though not most naturally – using either of these two
logical frameworks. Subfigure (c) shows that 57 formalizations
cannot be translated to INV, and 13 cannot be translated to
MTLb. Subfigure (d) illustrates that translation is conditionally
possible for almost all (86) requirements in STL, and 3 times
each in LTL and MTLb.

Fig. 3 apportions the aspect of mutual translatability illus-
trated in Fig. 2 (b-d) in greater detail using a directed acyclic
graph. In Subfigure (a) of Fig. 3, for example, we observe
that 15 naturally formalized requirements in MTLb can be
translated into LTL. This is, for instance, possible through the
application of successive X operators as showed earlier and
could be applied on R7 from Table I. We note in Subfigure (b)
that not all LTL formalizations can be translated to MTLb. An

example of one of these recorded 15 instances is R2, which
contains an unbounded U operator, or R5 given its unbounded
♢ operator. In contrast to this, R4 can be expressed in MTLb.
Lastly, Subfigure (c) apportions translations that we deem
possible under certain conditions. We deem translations to STL
possible under circumstances due to the different semantics
of STL. Firstly, dense time semantics pose challenges for
translations between pointwise and dense time representations.
Albeit there are some attempts in this direction [41], mostly
investigated in scope of MTL rather than STL. Secondly, as
APs in STL are propositions over signals (cf. R8, R9), they
can, e.g., translated to MTLb with dense time, given the signal
propositions would be reduced to APs.

Summarized Answer to RQ1

The analysis of 89 requirements reveals that most of them
represent either trivial global conditions (32), classified as
INV (i.e., invariants), or can be naturally formalized as LTL
expressions (39). Only a few cases (15 MTLb and 3 STL)
were naturally formalized using different logics. We record
that 47 of the requirements not naturally formalized in LTL
can be translated to LTL. Likewise, 56 requirements are
translatable to MTLb. Under certain assumptions, almost
all requirements (86) can be, though unnaturally, translated
to STL.

B. Answer to RQ2

Figure 4 aggregates the metrics used to describe the engi-
neering complexity of the SpaceWire requirement document.
Each metric is computed over the set of naturally required
logics (x-axes) and visualized using violin plots to illustrate the
distribution of metrics across individual properties correspond-
ing to requirements. The number of formalized requirements
n per logic is stated below the x-axis categories and remains
the same for all metrics. Additionally, we explicitly state the
mean µ, median M , and standard deviation σ for each logic
in each metric. The box plots within the violins indicate the
interquartile range, while circles highlight outliers.

Analyzing the Subfigures of Fig. 4 from top left to bottom
right, the following observations are worth noting. On average,
all exhibit a similar amount of APs, with MTLb leading this
ranking and STL having a more concentrated distribution with
a smaller range. Requirements formulated in STL require on
average a higher amount of COPs with greater scattering
compared to the others. In the case of LOPs, MTLb exhibits
a notably higher mean count and wider spread. In contrast,
INV and STL show lower and more consistent counts, as
indicated by their narrower distributions. Slightly more TOPs
are present in LTL, MTLb, and STL formalization as in INV.
LTL distinguishes itself from the others through its wider
spread and 4 outliers. As for the ASTH incurred by each
property, we observe that INV is shallower compared to the
others, indicating generally simpler structural expressions. A
similar pattern can be observed looking at the entropy.
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Fig. 4. Engineering complexity of the natural formalizations.

Summarized Answer to RQ2

We conclude the following moderate trends regarding en-
gineering complexity. Variability and quantity are highest
for atomic propositions (APs), logical operators (LOPs),
and temporal operators (TOPs) in LTL and MTLb, while
comparison operator (COP) usage is negligible across all
logical frameworks except for STL. In terms of abstract
syntax tree height (ASTH), INV expressions exhibit the
lowest values, with other frameworks demonstrating higher
values. A similar pattern emerges for entropy, though the
differences are more pronounced.

V. DISCUSSION

This section discusses our quantitative analysis results and
sets them in relation to other theoretical and noteworthy
aspects beyond translatability and engineering complexity.
Subsequently, we discuss potential implications for both prac-
titioners and researchers, before we finally discuss the threats
to the validity of our results.

A. Reflection on RQs

Quantitative observations. The quantitative results pre-
sented in Section IV illustrate the inherent and multi-faceted
facts about the natural translation of SpaceWire formalization
that are unique to our approach. Figure 2, Subfigure (a)
demonstrates that the majority of requirements can be naturally
expressed in LTL, with a significant number of invariants
(INV). This indicates that LTL, established as a founda-
tional temporal logic, is sufficiently expressive to formalize
a substantial portion of SpaceWire requirements. The second
category is MTLb, followed by STL covering the smallest
proportion of requirements.

Mutual translatability. Since the natural formalization
strategy employed selects the logic with the least amount
of temporal operators needed, we stick to the minimal logic
which is expressive enough to formalize a requirement. How-
ever, there might be a stronger logic which shares the same
operators as in the natural formalization, and therefore the
formula is a mutual formula of these logics [37]. Furthermore,
other translations might evolve using workarounds and relying
on certain assumptions. For example, a formula in MTLb can
be translated into LTL with respect to pointwise semantics,
which we assume for all the MTLb formulae in our study.

In Fig. 2 (b-d) resp. Fig. 3, we clarify the possible mutual
translations across the logical frameworks used in our natural
formalizations. In fact, most of the formulae, though not
naturally, can be translated to LTL and MTLb, as shown
in Fig. 2, Subfigure (b). Note that these values add on top
of the requirements which are naturally formalized using
these logics, shown in Subfigure (a). In other words, a to-
tal of 86 out of the considered 89 SpaceWire requirements
(39 naturally + 47 translations) could be formalized in LTL.
This is all but the three requirements revolving around signals.
Respectively, 71 of the considered 89 requirements (15 + 56)
can be formalized in MTLb. Formulas with unconstrained ♢
and U operators are not expressible in MTLb.

Other translations, termed conditional translations, involve
translations which are possible under circumstances, i.e., de-
pending on the semantics used. This is particularly the case
for STL since its underlying model differs from those of the
other temporal logics. In STL, signal values (as real numbers)
are assigned to each point in time (real time), and atomic
propositions are defined as predicates over these signals.
This approach is highly expressive, enabling all SpaceWire
requirements to be represented in STL through an appropriate,
albeit not natural, encoding. However, the reverse direction,
i.e., translating STL specifications into logics with simpler
models, is rarely feasible.

Engineering complexity. On the engineering complexity of
formulas illustrated in Fig. 4, we observe that the number of
APs, COPs, LOPs and ASTH logical formulations exhibited
similar patterns. This result justifies a reasonable meaning
of the natural translation concept. Some notable differences
can be observed for STL formulae which tend to involve a
more frequent use of comparison operators – expected due to



signals. However, we stress the fact that only three SpaceWire
requirements were formalized naturally in STL, weakening
its statistical significance. The number of temporal operators
in INV is much less – an expected outcome. ASTH follows
a similar pattern, a promising result indicating that greater
expressiveness does not incur deeper nesting structures in
the corresponding formula, which is desired from a practical
engineering perspective. Finally, the Shannon entropy among
LOPs and TOPs aligns with intuitive expectations. INV for-
malizations exhibit the least diversity in operator usage. The
operator entropy in the other logical formulations is higher
compared to INV but resides at similar levels and exhibiting
a similar spread.

B. Beyond Natural Formalization and Engineering Complexity

The mutual translation of formulas in different logics raises
the question of whether a “super” logic exists in which all the
requirements could be formalized. From a theoretical point
of view, there are more powerful temporal logics such as
TPTL [42] and mu-calculus [43] which enjoy more expres-
siveness than the logics employed in this work. As we have
already seen for the mutual translations among the logics
used in our natural formalizations, the question of whether all
requirements can be formalized in a single logic remains to be
answered conditionally depending on the assumed semantics.
In the case of SpaceWire, we would have to deviate from our
natural formalizations and switch to more powerful models
yielding dense time semantics.

While expressiveness and elegance of more powerful logics
are worthwhile to study from a logician’s perspective, from a
practical point of view, we argue that these properties are not
necessarily the most desirable ones. So far, we have already
discussed the notion of naturalism, leading to logical formulae
of acceptable engineering complexity for the SpaceWire case.
Moreover, given that our study serves as a reality check for
both practitioners and researchers, it is important to highlight
that all the logics used in our natural formalizations are
decidable. This ensures the practical applicability of reasoning
algorithms employed by various tools, including theorem
provers, model checkers and other tools promoted by formal
methods. This observation is particularly noteworthy in the
case of MTL, which is undecidable in general but decidable
for MTLb [34], [44], the only fragment that occurs in the
natural formalizations of SpaceWire requirements.

C. Implications for Practitioners

Language to property relationship. This paper deployed a
problem-oriented approach to formalize requirements stated in
natural language. In addition to outlining our methodology, we
identify key properties that characterize naturalism in formal
logical expressions and demonstrate how these properties
inform the choice of an appropriate logical framework (cf.
Fig. 1). Therewith we provide practitioners with insights
into the systematic process of encoding temporal behavior in
software requirements, emphasizing the impact of naturalism
on the effectiveness of formalizations.

Tool support. In formal methods, it is essential to provide
clear justifications for the formulation of specific requirements,
especially when aiming to utilize tools such as model checkers,
solvers, or runtime verification frameworks. These tools, while
powerful, are typically constrained by the logical frameworks
they support and offer interfaces to. Our findings on mutual
translatability and the observation that most SpaceWire re-
quirements can – albeit not always most naturally – be formal-
ized within the same logical framework enhance adaptability
and expand the applicability of tools across diverse verification
contexts. Moreover, our quantitative analysis revealed that a
substantial portion can be expressed as invariants. This obser-
vation is particularly relevant because invariants are relatively
straightforward to handle in software systems, requiring less
complexity in their verification compared to other property
types. This enhances the feasibility of employing various tools
and streamlines the implementation process, even more when
other non-LTL formulae become translated into LTL.

Creating a comprehensive reference table of representative
tools for each logical framework discussed in this paper proved
challenging. The status of relevant tools is often prototypical
and may often lack clarity about the specific frameworks or
fragments they support. While based on anecdotal evidence,
this highlights the critical need for improved visibility and
production-level tooling within the formal methods domain,
fostering industry adoption.

Fingerprinting. Practitioners prioritize implementation and
the complexity involved in it. To address this, we intro-
duced the concept of engineering complexity to evaluate
formalized requirements. Using our method, which analyzes
ASTs by examining aspects such as operators and entropy,
we offer a systematic way to assess and comprehend the
structural and logical intricacies of requirement documents. In
essence, this approach fingerprints the requirement document.
Such fingerprinting enables the clustering of requirements
into equivalence classes, fostering consistency and coherence
in requirement formulation and its formalization process.
Consequently, it enables the detection of inconsistencies in
how requirements are formulated. Such inconsistencies may
arise from overly detailed or overly high-level requirements,
structural outliers, or gradual drift in writing style over time.
Building on this, fingerprint components could also serve as
features for describing formulae. These features could then be
used to train prediction models that estimate the complexity
– and consequently, the feasibility – of implementing a given
requirement against a particular setting.

D. Implications for Researchers

Observed Pareto principle. The distribution of SpaceWire
requirements across logics used for their specification shows
that most are expressible in LTL, while more expressive logics
are used for a minority. This observation makes the case
for ‘simple’ logics instead of more expressive logics which
introduce complications in terms of automated reasoning. We
noted such a case for the MTL family, where less expressive
fragments of it were still expressive enough to formalize our



requirements. Though, we acknowledge the need for more
expressive logics that can cover all requirements one may
encounter beyond our SpaceWire case study.

Expressiveness and realizability. In search for a ‘super
logic’ which is expressive enough to cover all the require-
ments, we may end up with a strong logic with significant
power of expressiveness which might have drawbacks in
the implementation level. We must strike a delicate balance
between theoretical and practical considerations, ensuring that
both sides’ expectations are partially yet effectively met. In
other words, once a super logic becomes more complex, tool
support starts fading away.

A result of studying the SpaceWire protocol demonstrates
that all the requirements with time constraints can be expressed
in MTLb which has bounded U and ♢ operators. This means
there is no requirement with an eventually or until operator
which is unbounded, eliminating the need for more expressive
logics. We note that practice points to adoption of linear
time for specification (including within trace checking, GR(1)
synthesis, etc) – but we acknowledge that consideration of
branching logics such as TCTL (with respective application
areas, such as quantitative analysis, e.g., within UPPAAL [45])
are left for future work. Likewise, we emphasize possible
theoretical endeavors capable to account for uncertainty in
requirements, such as fuzzy [46] or deontic logics [47], [48].

Shaping future research directions. Our findings con-
firmed the presence of a Pareto effect in the formalized
SpaceWire requirements, where the majority of requirements
are invariants or can be captured using LTL. This underscores
the value of classifying basic temporal logic fragments or sub-
sets and exploring their expressive power, computational com-
plexity, and reasoning algorithms. While significant research
has focused on more expressive (super) logics, our results
highlight the importance of investigating existing fragments. In
particular, combining carefully selected subsets and fragments
of logical frameworks could yield unified frameworks that are
more specialized and thus more effective in problem-oriented
settings, such as those demonstrated in this paper.

Furthermore, we demonstrated the impact of mutual trans-
latability, particularly when naturalism in formulae is no longer
prioritized. The challenges related to tool support further
highlight the importance of translatability, as many tools are
restricted to specific logical frameworks or their fragments.
This suggests that developing ‘functions’ or ‘recipes’ for
(automatically) translating one logical formula into another
with minimal information loss is a valuable direction for
further research.

E. Threats to Validity

Internal validity. Subjectivity in natural formalization
poses an internal validity threat, as there may exist different
formulations for some requirements, which may affect the
quantitative metrics employed in our investigation – (i) several
equivalent properties may exist for a given requirement, and
(ii) subjective interpretations may arise due to natural lan-
guage ambiguity. To mitigate this, the specification process

was performed according to the decision tree of Sec. III,
ensuring that formalization was consistently guided by the
temporal operators present in each requirement. Therefore, we
believe that any residual ambiguity has minimal impact on the
outcome of the quantitative analysis performed.

Additionally, our fine-to-coarse-grained pragmatism on AP
granularity poses another potential threat to validity, as the
chosen granularity directly impacts the perceived engineering
complexity. To address this, we explicitly declared the prag-
matism behind how granularity was handled, ensuring that re-
producibility and comparability of the resulting fingerprinting
process – both within and across requirement documents –
remains feasible.

External validity. While the SpaceWire protocol is repre-
sentative within its domain, relying on a single case limits
the generalizability of our results towards other domains. Our
investigation is tailored to SpaceWire use cases, and different
contexts may yield varying quantitative outcomes and logical
frameworks. However, we believe our overall methodology
remains applicable across domains. In support of this, we
provided a detailed specification of our methodology and a
replication package, encouraging future empirical studies to
explore larger and more diverse requirement sets over time.

Construct validity. The selected quantitative metrics (e.g.,
APs, COPs, LOPs, TOPs, and entropy – Sec. IV) are syntactic
in nature as they could influence an implementation, ignoring
factors like semantics or algorithm complexity (e.g., for model
checking). This deliberate choice aims for (i) generality (since
an overall objective for some system analysis such as synthesis
or model checking is not assumed) and (ii) fingerprinting sets
of specifications in an objective manner. By restricting the
objective, logic employed and selected algorithms, engineering
complexity could be assessed more accurately and confidently.
On a similar note, we avoid a focus on semantic formula
characteristics and do not address issues of simplification,
uniform representation, normal or canonical forms.

Conclusion validity. Our approach to measuring engineer-
ing complexity is not exhaustive, as it excludes aspects such
as interpretational difficulty and the behavior of formulas
within a system’s broader context. While the reliability of our
method may decrease for relatively small formulas, we argue
that our problem-oriented focus ensures practical value, as
even complexity measurements for small formulas can provide
insights for real-world applications.

VI. RELATED WORK

This paper broadly addresses the problem of transitioning
from natural language software requirements into precise
specifications. Therefore, we approach related work from two
perspectives. The first includes discussing other works by
the wider community addressing the broader specification
challenge, along with ones adopting case studies. Secondly,
since choosing the suitable logic for a requirement is a non-
trivial problem, we further discuss relevant studies addressing
suitability and translation across different temporal languages,
also justifying our selected logics.



Several approaches have pursued accessibility of temporal
logic-enabled reasoning to practitioners and engineers alike.
Specification patterns have become a popular solution. Dwyer
et al. [20] introduced patterns for safety properties, which were
later extended to address quantitative [49] real-time [10] and
probabilistic [50] properties. Semiformal approaches use for-
mal descriptions through an intermediate representation [51],
natural language [30] or utilizing structured language such
as the FRET approach [19]. In the latter case, a structured
natural language can be used for incremental specification,
visualization and tool interfacing [52]. Orthogonally, LTL
synthesis has been approached from several directions, e.g., via
classical semantic parsing, as translation or with evolutionary
methods [5], [22]. Lately, large language models have also
shown potential [3], [4], [53].

Model problems and benchmark cases such as the RPC
memory specification or the ARM Advanced Microcontroller
Bus Architecture [54] have shown to be highly useful to
the community [55], justifying our choice of a well-known,
flight-proven protocol. Formalization endeavors have been
undertaken in multiple and diverse domains and systems,
albeit typically targeting in each case specific logical frame-
works and purposes with numerous examples which include
on-board electric power systems [56], web services [57],
hardware-software systems [58], railway control systems [59],
or aerospace [60]. Our scope is different in that we build on
such body-of-knowledge but extend towards (i) methodolog-
ical aspects (how we arrived to a specification, considering
a logics arsenal) instead of a specific formalism and (ii) we
accompany our dataset of SpaceWire with tool support to aid
reproduction and further utilization by the community. To the
best of our knowledge, this is the first effort to take such a
problem-oriented approach.

Temporal logics in general have proved a well-established
foundation and have been extensively studied, ranging from
logics as broadly applied in formal methods [2] to enable
reasoning on systems behaviour [7], [61]–[63]. By extending
LTL, studying real-time specifications started by introducing
metric temporal logic by Alur and Henzinger [11], [12],
[64], from the perspective of expressiveness and complexity.
Real-time system behaviour specifications are further studied
in [7], however, in many approaches the empirical study of
requirements with respect to the theoretical aspects is not
considered. In our investigation, we confront SpaceWire as
a real-world case, and address its formalization process with
respect to a set of provided and well-established logics. In
order to analyze the possible translation of formulas, we point
out that while some translations between logics are trivial,
however, others require more rigorous methods as done in [65]
and [37], employed in our study.

VII. CONCLUSION AND FUTURE WORK

In this paper, we addressed the long-pursued challenge of
transitioning from natural language to formal specification by
tackling the SpaceWire data-handling protocol often adopted
on spacecraft and other on-board systems. We systematically

extracted software a total of 89 requirements and transcribed
them into properties according to a decision process over
different established logics with the aim of maximizing natural
encoding. We assessed the suitability of respective logical
languages, highlighting their practical traits from a systems
engineering perspective. We believe that findings from this
endeavor serve as a reality check as they offer a clearer un-
derstanding of how formal methods can be applied effectively
in the context of aerospace and other critical domains, from
the viewpoints of both practitioners and researchers.

Regarding theoretical aspects, we plan to investigate ap-
plicability and a supporting methodology towards use for
synthesis and verification in particular, continuing with the
SpaceWire protocol as a base case in tandem with the dataset
and tool support accompanying this paper. For synthesis or
planning, investigation of suitability and potential transfor-
mations to synthesizable logic fragments (e.g., GR(1) [66],
[67]) would be a conceptual next step. Verification, particularly
at runtime, requires investigating monitorability twofold: On
one hand regarding appropriate models of time and on the
other hand regarding formulation of properties e.g., for INV or
LTL to appropriate three- or four-valued [62], [63] projections.
Naturally, extending to other requirement documents is crucial
to validate whether the presented results are generalizable and
insights transferable to other domains.

Regarding engineering aspects, we aim to further develop
our notion of fingerprinting requirements documents and re-
spective analytics extraction, which we believe can play a
larger role in adjacent requirements engineering activities.
Integration with other tools such as FRET [19] would go
a long way in supporting the early design cycle, as well
as extending tlparser towards bridging to other domain-
specific languages used by other tools. We envision extending
our engineering complexity metrics to incorporate runtime
performance of reasoning tasks enabled by these integrations,
along with the semantic aspects of formulae. Orthogonally,
our specifications’ dataset may be leveraged to train GPT
models for human-in-the-loop arrangements targeting a trade-
off between manual specification and automation. Require-
ments generated from such models can offer significant value
from a logical perspective, since these requirements could
correspond to true formulas of the logical framework, within
scope of automated theorem generation [68]. Finally and
with a broader view, investigating the specification process
with users in an exploratory manner and in an end-to-end
setting [69] along with the tool and dataset presented appears
promising and likely to draw further insights for the formal
method community.
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