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Abstract

Faroldi argues that deontic modals are hyperintensional and thus
traditional modal logic cannot provide an appropriate formalization
of deontic situations. To overcome this issue, we introduce novel jus-
tification logics as hyperintensional analogues to non-normal modal
logics. We establish soundness and completeness with respect to var-
ious models and we study the problem of realization.

1 Introduction

Justification logic [4, 17] is a variant of modal logic that replaces the implicit
�-operator with explicit justifications. Instead of formulas �A, meaning,
e.g., A is known or A is obligatory, the language of justification logic features
formulas of the form t : A that stand for t justifies the agent’s knowledge of A
or A is obligatory for reason t, where t is a so-called justification term.

The first justification logic, the Logic of Proofs [1], has been developed by
Artemov in order to provide a classical provability semantics for the modal
logic S4 (and thus also for intuitionistic logic) [1, 16]. Starting with the
work of Fitting [10], several interpretations of justification logic have been
presented that combine justifications with traditional possible world mod-
els [3, 15, 19]. This opened the door for numerous applications of justification
logic, e.g., in epistemic and deontic contexts [2, 5, 13, 22, 24, 26].

One of the features of a normal modal logic is that it is closed under the
rule of necessitation, that is if F is valid, then so is �F . Hence together with
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axiom K, we can easily derive the rule of monotonicity: Suppose A → B is
valid. By necessitation, we get �(A → B). By axiom K and modus ponens
we conclude �A→ �B.

Pacuit [21] mentions several interpretations of � for which the validities
and rules of inference of normal modal logic can be questioned. A well-known
example is the paradox of gentle murder [11], where � is read as ought to.
Consider the statements:

Jones murders Smith. (1)

Jones ought not to murder Smith. (2)

If Jones murders Smith, then Jones ought to murder Smith gently. (3)

These sentences seem to be consistent. However, from (1) and (3) we infer

Jones ought to murder Smith gently. (4)

Moreover, we have the following valid implication

If Jones murders Smith gently, then Jones murders Smith. (5)

By the rule of monotonicity, (5) implies

If Jones ought to murder Smith gently,

then Jones ought to murder Smith. (6)

Now (4) and (6) together yield

Jones ought to murder Smith. (7)

This contradicts (2). This argument suggests that deontic modal logic should
not validate the rules of normal modal logic and thus a semantics different
from Kripke semantics is needed. The traditional approach for models of
non-normal modal logics is to use neighborhood semantics. There, a so-called
neighborhood function N assigns to each world w a set of sets of worlds N(w)
and a formula �F is true at w if the truth set of F is an element of N(w).

Justification logics are parametrized by a constant specification, which is
a set

CS ⊆ {(c, A) | c is a constant justification term and

A is an axiom of justification logic}.
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A constant specification CS is called axiomatically appropriate if for each
axiom A there is a constant c such that (c, A) ∈ CS. Instead of the rule
of necessitation, justification logics include a rule called axiom necessitation
saying that one is allowed to infer c : A if (c, A) ∈ CS. Hence, In epistemic
settings, we can calibrate the reasoning power of the agents by adapting the
constant specification. 1

Faroldi and Protopopescu [8, 9] suggest using this mechanism also in
deontic settings in order to avoid the usual paradoxes. For instance, they
discuss Ross’ paradox [23], which is:

You ought to mail the letter. (8)

implies
You ought to mail the letter or burn it. (9)

The reason is as before. It is a classical validity that

you mail the letter implies you mail the letter or burn it. (10)

By the monotonicity rule we find that (8) implies (9).
Fardoli and Protopopescu avoid this paradox by restricting the constant

specification such that although (10) is a logical validity, there will no jus-
tification term for it. Thus the rule of monotonicity cannot be derived and
there is no paradox.

One of the reasons why Faroldi prefers justification logic over using neigh-
borhood models is that he claims that deontic modalities are hyperinten-
sional [7], i.e. they can distinguish between logically equivalent formulas.
Here is an example to show that the usual modal operator is not hyperinten-
sional. Consider the following sentences:

You ought to drive. (11)

You ought to drive or to drive and drink. (12)

Intuitively sentences (11) and (12) are not equivalent, yet their formalizations
in modal logic are so. If we represent (11) by �A and (12) by �(A∨(A∧B)),

1It is important to consider axiom necessitation as a rule and not an axiom schema,
even though it is a rule without premises. If we considered c : A as an axiom for each
(c, A) ∈ CS, then the notion of an axiom would depend on the notion of a constant
specification, which depends on the notion of an axiom. In order to avoid this circularity,
we introduce axiom necessitation as a rule.

3



then we have A↔ A∨ (A∧B) by propositional reasoning and by the rule of
equivalence we infer �A ↔ �(A ∨ (A ∧ B)). However, hyperintensionlity is
one of the distinguishing features of justification logics: they are hyperinten-
sional by design. Even if A and B are logically equivalent, we may have that
a term t justifying A does not justify B. Think of the Logic of Proofs, where
the terms represent proofs in a formal system (like Peano arithmetic). Let A
and B be logically equivalent formulas. In general, a proof of A will not also
be a proof of B. In order to obtain a proof of B we have to extend the proof
of A with a proof of A → B and an application of modus ponens. Thus in
justification logic, terms do distinguish between equivalent formulas, which,
according to Faroldi, makes it a suitable framework for deontic reasoning.

There is a problem with restricting the constant specification. Namely,
the resulting constant specification will not be axiomatically appropriate,
i.e. there will be axioms that are not justified by any term. This implies,
however, that the Internalization property (saying that a justification logic
internalizes its own notion of proof) does not hold, which is a problem for
several reasons.

First, Internalization is needed to obtain completeness with respect to
fully explanatory models. That is models where each formula that is obliga-
tory (or believed) in the sense of the modal � operator has a justification.

Further, Internalization is often required to obtain completeness when a
form of the D axiom is present [15, 19, 20]. In deontic settings, this is often
the case since obligations are supposed not to contradict each other. Hence
restricting the constant specification leads to deductive systems that are not
complete. Conflicting obligations in justification logic have been studied
in [6]. Recently, it turned out that this approach can also be used to analyze
an epistemic paradox of quantum physics [25].

Moreover, Internalization is essential to obtain realization results. A jus-
tification logic realizes a modal logic if, given any theorem F of the modal
logic, each occurrence of � in F can be replaced with some justification term
such that the resulting formula is a theorem of the justification logic. Real-
ization is an important property connecting implicit and explicit modalities.

In the present paper, we introduce two novel justification logics JECS and
JEMCS that are the explicit counterparts of the non-normal modal logics E
and EM, respectively. As usual for justification logics, JECS and JEMCS are
hyperintensional and can therefore serve as an appropriate formalization of
deontic modals. On a technical level, the main novelty of our paper is the
introduction of two types of terms for JECS and JEMCS. This makes it possible
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to formalize the characteristic principle of JECS and JEMCS as an axiom (and
not as a rule) and, therefore, our logics have the Internalization property.
Note that we are not the first to use two types of terms. In [14], terms for
representing proofs and terms justifying consistency have been combined in
constructive justification logic.

We show soundness and completeness of JECS and JEMCS with respect
to basic models, modular models and fully explanatory modular models.
Moreover, we show that the justification logics JECS and JEMCS realize the
modal logics E and EM, respectively. From a technical perspective, the case
of realizing E is particularly interesting because there we have to deal with
a rule that does not respect the polarities of subformulas.

Acknowledgement. We thank the anonymous reviewers for their help-
ful comments.

2 Justification logic

To define the language of our novel justification logic JECS, we extend the
usual language of justification logic by introducing two types of terms. We
consider proof terms and justification terms, which are inductively built-up
from countably many proof constants and variables. So if we denote proof
constants by αi and proof variables by ξi, the set of proof terms is defined
inductively as follows:

λ ::= αi | ξi | (λ · λ) | (λ+ λ) | !λ .

Justification terms have the following form:

t ::= e(λ) .

where λ is a proof term. We denote the set of proof terms by PTm and
the set of justification terms by JTm. Therefore, the set of all terms is
Tm := PTm∪JTm. We use λ, κ, γ for elements of PTm and r, s, t for elements
of JTm.

Let Prop be a countable set of atomic propositions. Formulas are induc-
tively defined as follows:

F ::= Pi | ⊥ | (F → F ) | λ : F | [t]F ,
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where Pi ∈ Prop, λ ∈ PTm, and t ∈ JTm. We use Fm for the set of formulas.
λ : F is read as λ proofs F and [t]F is read as t justifies F . The axioms of
JE are:

j λ : (F → G)→ (κ : F → λ · κ : G)
j+1 (λ : F ∨ κ : F )→ (λ+ κ) : F
jt λ : F → F
j4 λ : F → !λ : λ : F
je (λ : (F → G) ∧ λ : (G→ F ))→ ([e(λ)]F → [e(λ)]G)
je+ ([e(λ)]F ∨ [e(κ)]F )→ [e(λ+ κ)]F

Note that the axioms j, j+1, jt, and j4 are exactly the axioms of the Logic of
Proofs. Indeed, dropping je and je+ from JECS and restricting the language
to proof terms (hence excluding justification terms) yields the Logic of Proofs.

Axiom je shows how justification terms e(λ) are constructed based on
proof terms λ; and axiom je+ is similar to axiom j+1 but for justification
terms. It shows that the operation + combines two proof terms such that if
e(λ) or e(κ) provides evidence for F , the combined evidence e(λ+κ) remains
evidence for F .

As we will see later, the axiom je+ is only used to prove completeness
of the logic JE w.r.t. fully explanatory models. It is not needed to establish
our other (completeness) results.

In order to define the deductive system for our logic, we first need the
notion of a constant specification.

Definition 1 (Constant Specification). A constant specification CS is any
subset:

CS ⊆ {α : A | α is a proof constant and A is an axiom of JE} .

A constant specification CS is called axiomatically appropriate if for each
axiom A of JE there is a constant α with (α,A) ∈ CS.

Definition 2 (Logic JECS). For a constant specification CS, the logic JECS is
defined by a Hilbert-style system with the axioms JE and the inference rules
modus ponens (MP) and axiom necessitation (ANCS), given by:

α : A
where (α,A) ∈ CS .

We write JECS ` A to express that a formula A is provable in JECS. If the
deductive system is clear from the context and we only want to stress the
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constant specification, we simply use `CS A. When the constant specification
does not matter or is clear from the context, we drop the subscript CS and
write ` A.

It is a standard result that justification logics with an axiomatically ap-
propriate constant specification internalize their own notion of proof [1, 4, 17].

Lemma 3 (Internalization). Let CS be an axiomatically appropriate constant
specification. For any formula A with ` A, there exists a proof term λ such
that ` λ : A.

Moreover, justification logics enjoy a deduction theorem [1, 4, 17].

Lemma 4 (Deduction). Let CS be an arbitrary constant specification. For
any set ∆ of formulas and for any formulas A and B,

∆, A ` B iff ∆ ` A→ B .

Let us now turn to semantics. In order to present basic evaluations for
JECS, we need some operations on sets of formulas.

Definition 5. Let X, Y be sets of formulas and λ be a proof term. We define
the following operations:

λ : X := {λ : F | F ∈ X};

X · Y := {F | G→ F ∈ X for some G ∈ Y };

X � Y := {F | F → G ∈ X and G→ F ∈ X for some G ∈ Y } .

Definition 6 (Basic evaluation). Let CS be an arbitrary constant specifica-
tion. A basic evaluation for JECS is a function ε that maps atomic proposi-
tions to 0 or 1

ε(Pi) ∈ {0, 1} for Pi ∈ Prop

and maps terms to a set of formulas:

ε : PTm ∪ JTm→ P(Fm) ,

such that for arbitrary λ, κ ∈ PTm:

1. ε(λ) · ε(κ) ⊆ ε(λ · κ);

2. ε(λ) ∪ ε(κ) ⊆ ε(λ+ κ);
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3. F ∈ ε(λ) if (λ, F ) ∈ CS;

4. λ : ε(λ) ⊆ ε(!λ);

5. ε(λ)� ε(e(λ)) ⊆ ε(e(λ));

6. ε(e(λ)) ∪ ε(e(κ)) ⊆ ε(e(λ+ κ)).

Definition 7 (Truth under a basic evaluation). We define truth of a for-
mula F under a basic evaluation ε inductively as follows:

1. ε 1⊥;

2. ε 
 P iff ε(P ) = 1 for P ∈ Prop;

3. ε 
 F → G iff ε 1 F or ε 
 G;

4. ε 
 λ : F iff F ∈ ε(λ);

5. ε 
 [t]F iff F ∈ ε(t).

Definition 8 (Factive basic evaluation). A basic evaluation ε is called factive
if for any formula λ : F we have ε 
 λ : F implies ε 
 F .

Definition 9 (Basic model). Given an arbitrary CS, a basic model for JECS

is a basic evaluation that is factive.

As expected, we have soundness and completeness with respect to basic
models. The following theorem is established in Appendix A.

Theorem 10 (Soundness and completeness w.r.t. basic models). Let CS be
an arbitrary constant specification. The logic JECS is sound and complete
with respect to basic models. For any formula F ,

JECS ` F iff ε 
 F for all basic models ε for JECS .

3 Neighborhood semantics and modular

models

The main purpose of modular models is to connect justification logic to
traditional modal logic. To define modular models for JECS, we start with a
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neighborhood model (like for the modal logic E) and assign to each possible
world a basic evaluation. This, however, is not enough since these basic
evaluations may have nothing to do with the neighborhood structure of the
model. Hence we introduce the following principle:

having a specific justification for F must yield

F is obligatory in the sense of the neighborhood structure.

This principle was first introduced in epistemic contexts and is, therefore,
called justification yields belief (JYB).

Definition 11 (Neighborhood function). For a non-empty set of worlds W ,
a neighborhood function is any N : W → P (P(W )).

Definition 12 (Quasi-model). A quasi-model for JECS is a triple

M = 〈W,N, ε〉

where W is a non-empty set of worlds, N is a neighborhood function and ε
is an evaluation function that maps each world to a basic evaluation εw.

Definition 13 (Truth in quasi-model). LetM = 〈W,N, ε〉 be a quasi-model.
Truth of a formula at a world w in a quasi-model is defined inductively as
follows:

1. M, w 1⊥;

2. M, w 
 P iff εw(P ) = 1, for P ∈ Prop;

3. M, w 
 F → G iff M, w 1 F or M, w 
 G;

4. M, w 
 λ : F iff F ∈ εw(λ);

5. M, w 
 [t]F iff F ∈ εw(t).

We will write M 
 F if M, w 
 F for all w ∈ W .

Remark 14. The neighborhood function plays no rule in the definition of
truth in quasi-models. Hence truth in quasi-models is local to a possible world.
Let M = 〈W,N, ε〉 be a quasi-model. For any w ∈ W and any formula F ,

M, w 
 F iff εw 
 F . (13)
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Definition 15 (Factive quasi-model). A quasi-model M = 〈W,N, ε〉 is fac-
tive if for each world w, we have that for any formula λ : F ,

M, w 
 λ : F implies M, w 
 F .

Definition 16 (Truth set). LetM = 〈W,N, ε〉 be a quasi-model. The truth
set of a formula F , denoted by |F |M, is the set of all worlds in which F is
true, i.e.,

|F |M := { w ∈ W | M, w 
 F } .

Further, we define

�w := {F | |F |M ∈ N(w)} .

Looking back at neighborhood models for E, it is easy to see that F ∈ �w

means (modulo the different language that we are using) that �F holds at
world w. As a result, we can formulate the principle of justification yields
belief as follows:

for any t ∈ JTm and w ∈ W, we have that εw(t) ⊆ �w . (JYB)

Definition 17 (Modular model). A JECS modular model is a quasi-model
for JECS that is factive and satisfies (JYB).

JECS is sound and complete with respect to modular models. A proof of
the following theorem is given in Appendix B.

Theorem 18 (Soundness and completeness w.r.t. modular models). Let CS
be an arbitrary constant specification. For each formula F we have

JECS ` F iff M 
 F for all JECS modular models M.

It is natural to ask whether every obligatory formula in a modular model
is justified by a justification term.

Definition 19 (Fully explanatory modular model). A JECS modular model
M = 〈W,N, ε〉 is fully explanatory if for any w ∈ W and any formula F ,

|F |M ∈ N(w) implies F ∈ εw(t) for some t ∈ JTm .
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The fully explanatory property can be seen as the converse of justification
yields belief. In fully explanatory models we have that for each world w,⋃

t∈JTm

εw(t) = �w .

For any axiomatically appropriate constant specification CS, we can show
that JECS is sound and complete with respect to fully explanatory JECS modu-
lar models. In order to obtain this, we need monotonicity of the e-operation
with respect to + as expressed in axiom je+. The proof is presented in
Appendix C.

Theorem 20 (Soundness and completeness for fully explanatory modular
models). Let CS be an axiomatically appropriate constant specification. JECS

is sound and complete with respect to fully explanatory JECS modular models.

4 Monotonic justification logic

There are several applications for which the modal logic E is too weak and
one considers the extension of E with the axiom �(A∧B)→ (�A∧�B) or,
equivalently, with the rule

A→ B

�A→ �B
.

The resulting logic is called EM. In this section we introduce an explicit
counterpart JEM of the modal logic EM.

First, we adapt the language as follows. Proof terms are given as before
but without +:

λ ::= αi | ξi | (λ · λ) | !λ .

The set of justification terms is built up inductively, starting from a countable
set of justification variables xi, by:

t ::= xi | t+ t | m(λ, t)

where λ is a proof term. Formulas are then built using this extended set of
justification terms. It will always be clear from the context whether we work
with the basic language for JE or with the extended language for JEM.

The axioms of JEM consist of the axioms j, jt, and j4 together with

jm λ : (F → G)→ ([t]F → [m(λ, t)]G).
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j+2 ([t]F ∨ [s]F )→ [t+ s]F .

For a constant specification CS, we now consider axioms of JEM; and the
system JEMCS consists of the axioms of JEM plus the rules of modus ponens
and axiom necessitation. Note that Internalization and the Deduction the-
orem hold for JEMCS, too. Axiom j+2 will be used in the realization proof,
but we do not need + for proof terms in JEM and thus we dispense with
axiom j+1. For JEM, we can establish completeness w.r.t. fully explanatory
models without using axiom je+, thus we do not include it in JEM.

A basic evaluation for JEMCS is defined similar to a basic evaluation for
JECS with the conditions for + on proof terms and for e dropped and with the
additional requirements that for arbitrary terms λ ∈ PTm and t, s ∈ JTm:

1. ε(λ) · ε(t) ⊆ ε(m(λ, t)) ;

2. ε(t) ∪ ε(s) ⊆ ε(t+ s).

Further we define a monotonic basic model (for JEMCS) as a basic evaluation
for JEMCS that is factive.

Similar to JECS, we can show that JEMCS is sound and complete with
respect to monotonic basic models.

Theorem 21. Let CS be an arbitrary constant specification. The logic JEMCS

is sound and complete with respect to monotonic basic models. For any for-
mula F ,

JEMCS ` F iff ε 
 F for all monotonic basic models ε for JEMCS .

Now we are going to adapt modular models to JEMCS. A neighborhood
function N for a non-empty set of worlds W is called monotonic provided
that for each w ∈ W and for each X ⊆ W ,

if X ∈ N(w) and X ⊆ Y ⊆ W then Y ∈ N(w).

A monotonic quasi-model for JEMCS is defined like a quasi-model for JECS

but we use a monotonic neighborhood function and each world is mapped to a
basic evaluation for JEMCS. A monotonic modular model is then defined like
a modular model but the underlying quasi-model is required to be monotonic.
As for JECS we get completeness or JEMCS with respect to monotonic modular
models.
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Theorem 22. Let CS be an arbitrary constant specification. For each for-
mula F we have

JEMCS ` F iff M 
 F for all JEMCS monotonic modular models M.

To achieve completeness with respect to fully explanatory monotonic
modular models, one needs some additional construction to guarantee that
the neighborhood function constructed in the canonical model is monotonic.
Details can be found in Appendix D.

Theorem 23. Let CS be an axiomatically appropriate constant specification.
JEMCS is sound and complete with respect to fully explanatory JEMCS mono-
tonic modular models.

5 Realization

This section is concerned with the exact relationship between some non-
normal modal logic M and its explicit counterpart J. Let FmM denote the set
of formulas from modal logic and FmJ the set of all justification logic formulas
(for E or for EM) that do not contain subformulas of the form λ : F . There
is the so-called forgetful translation ◦ from FmJ to FmM given by

⊥◦ := ⊥ P ◦ := P (A→ B)◦ := A◦ → B◦ ([t]A)◦ := �A◦ .

However, we are mainly interested in the converse direction. A realization is
a mapping from FmM to FmJ such that for all A ∈ FmM, we have (r(A))◦ = A.

Now the question is whether a realization theorem holds, i.e. given a
modal logic M and a justification logic J, does there exist a realization r such
that for all A ∈ FmM, we have that M ` A implies J ` r(A) ?

In order to establish such a realization theorem, we need the notion of a
schematic constant specification.

Definition 24. A constant specification CS is called schematic if it satisfies
the following: for each constant c, the set of axioms {A | (c, A) ∈ CS}
consists of all instances of one or several (possibly zero) axioms schemes of
the justification logic.

Schematic constant specifications are important in the context of sub-
stitutions, where a substitution replaces atomic propositions with formulas,
proof variables with proof terms, and justification variables with justification
terms. The following lemma is standard [17].

13



Lemma 25. Let CS be a schematic constant specification. We have for any
set of formulas ∆, any formula A, and any substitution σ

∆ ` A implies ∆σ ` Aσ .

In order to show a realization result, we further need a cut-free sequent
calculus for the given modal logic. The system GE is given by the following
propositional axioms and rules, the structural rules, and the rule (RE). If
we replace (RE) with (RM), we obtain the system GM. In these systems, a
sequent is an expression of the form Γ ⊃ ∆ where Γ and ∆ are finite multisets
of formulas.

Propositional axioms and rules:

P ⊃ P

Γ ⊃ ∆, A B,Γ ⊃ ∆
(→⊃)

A→ B,Γ ⊃ ∆

⊥ ⊃

A,Γ ⊃ ∆, B
(⊃→)

Γ ⊃ ∆, A→ B

Structural rules:

Γ ⊃ ∆ (w ⊃)
A,Γ ⊃ ∆

A,A,Γ ⊃ ∆
(c ⊃)

A,Γ ⊃ ∆

Γ ⊃ ∆ (⊃ w)
Γ ⊃ ∆, A

Γ ⊃ ∆, A,A
(⊃ c)

Γ ⊃ ∆, A

Modal rules:

A ⊃ B B ⊃ A (RE)
�A ⊃ �B

A ⊃ B (RM)
�A ⊃ �B

The systems GE and GM are sound and complete [12, 18].

Theorem 26. For each modal logic formula A, we have

1. GE ` ⊃ A iff E ` A;

2. GM ` ⊃ A iff EM ` A.
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5.1 Realization of the modal logic E in JECS

To realize the non-normal modal logic E in JECS, we need the following no-
tions. Let D be a GE-proof of ⊃ A. We say that occurrences of � in D
are related if they occur in the same position in related formulas of premises
and conclusions of a rule instance in D. We close this relationship of related
occurrences under transitivity.

All occurrences of � in D naturally split into disjoint families of related
�-occurrences.

We call a family of �-occurrences essential if at least one of its members
is a �-occurrence introduced by an instance of (RE).

We say two essential families are equivalent if there is an instance of (RE)
rule which introduces �-occurrences to each of these two families.

We close this relationship of equivalent families under transitivity. This
equivalence relation makes a partition on the set of all essential families.
Hence by a class of equivalent essential families we mean the set of all es-
sential families which are equivalent.

Theorem 27 (Constructive realization of logic E). For any axiomatically ap-
propriate and schematic constant specification CS, there exist a realization r
such that for each formula A ∈ FmM, we have

GE ` ⊃ A implies JECS ` r(A) .

We will not present the full proof of the realization theorem. The essence
is the same as in the proof of the constructive realization theorem for the
Logic of Proofs [1, 17].

Let D be the GE-proof of ⊃ A. The realization r is constructed by the
following algorithm. We reserve a large enough set of proof variables as
provisional variables.

1. For each non-essential family of �-occurrences, replace all occurrences
of � by [e(ξ)] such that each family has a distinct proof variable ξ.

2. For a class of equivalent essential families F , enumerate all instances of
RE rules which introduce a �-occurrence to this class of families. Let
nf denote the number of all such RE rule instances. Replace each �
of this class of families with a justification term [e(ζ1 + ...+ ζnf

)] where
each ζi is a provisional variable. Applying this step for all classes of
equivalent essential families yields a derivation tree D′ labeled by FmJ-
formulas.
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3. Replace all provisional variables in D′ from the leaves toward the root.
By induction on the depth of a node in D′, we show that after each
replacement, the resulting sequent of this step is derivable in JECS where
for finite multisets Γ and ∆ of FmJ-formulas, derivability of Γ ⊃ ∆
means Γ `CS

∨
∆.

According to the enumeration defined in 2, the ith occurrence of RE rule
in D′ is labelled by:

A ⊃ B B ⊃ A (RE)
[e(κ1 + . . .+ ζi + . . .+ κnf

)]A ⊃ [e(κ1 + . . .+ ζi + . . .+ κnf
)]B

where the κ’s are proof terms and ζi is a provisional variable.

By I.H. we have A `CS B and B `CS A. By the Deduction Theorem we
get `CS A → B and `CS B → A. By the internalization lemma there are
proof terms such λi1 , λi2 that `CS λi1 : (A → B) and `CS λi2 : (B → A).
Replace ζi globaly in the whole derivation D′ with (λi1 + λi2).

Now by axiom j+1 we conclude

`CS (κ1 + . . .+ (λi1 + λi2) + . . .+ κnf
) : (A→ B)

and similarly

`CS (κ1 + . . .+ (λi1 + λi2) + . . .+ κnf
) : (B → A).

By axiom je we find

`CS [e(κ1+. . .+(λi1+λi2)+. . .+κnf
)]A→ [e(κ1+. . .+(λi1+λi2)+. . .+κnf

)]B

Note that since CS is schematic and by Lemma 25, replacing ζi with (λi1+λi2)
in D′ does not affect already established derivability results.

5.2 Realization of the modal logic EM in JEMCS

In order to realize the modal logic EM in JEMCS, we need some technical
notions about occurrences of �-operators.

We assign a positive or negative polarity to each sub-formula occurrence
within a fixed formula A as follows:

1. To the only occurrence of A in A we assign the positive polarity.
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2. If a polarity is assigned to a sub-formula of the form B → C in A, then
the same polarity is assigned to C and opposite polarity is assigned
to B.

3. If a polarity is already assigned to a sub-formula of the form �B in A,
then the same polarity is assigned to B.

Let �B be a sub-formula of A. If A ∈ ∆ in a sequent Γ ⊃ ∆, then the
�-operator of �B has the same polarity as the sub-formula occurrence of
�B in A. If A ∈ Γ in a sequent Γ ⊃ ∆, then the �-operator of �B has the
opposite polarity as the sub-formula occurrence of �B in A.

Remark 28. All rules of GM respect the polarities of �-operators. The
rule (RM) introduces negative �-occurrence to the left side, and positive
�-occurrence to the right side of the conclusion.

In the following we consider the system GM. Let D be a derivation in GM.
Again, we say that occurrences of � in D are related if they occur in the same
position in related formulas of premises and conclusions of a rule instance
in D. We close this relationship of related occurrences under transitivity.

All occurrences of � in D naturally split into disjoint families of related
�-occurrences. We call such a family essential if at least one of its members
is a positive �-occurrence introduced by an instance of (RM).

Now we are ready to formulate and prove the realization theorem.

Definition 29 (Normal realization). A realization is called normal if all
negative occurrences of � are realized by distinct justification variables.

Theorem 30 (Constructive realization). For any axiomatically appropriate
and schematic constant specification CS, there exist a normal realization r
such that for each formula A ∈ FmM, we have

GM ` ⊃ A implies JEMCS ` r(A) .

Let D be the GM-proof of ⊃ A. The realization r is constructed by the
following algorithm. We reserve a large enough set of justification variables
as provisional variables.

1. For each non-essential family of �-occurrences, replace all occurrences
of � by [x] such that each family has a distinct justification variable.
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2. For an essential family of �-occurrences, enumerate all occurrences of
(RM) rules that introduce a �-operator to this family. Let n be the
number of such occurrences. Replace each �-occurrence of this family
with [v1+...+vn] where each vi is a fresh provisional variable. Applying
this step for all essential families yields a derivation tree D′ labeled by
FmJ-formulas.

3. Replace all provisional justification variables in D′ from the leaves to-
ward the root. By induction on the depth of a node in D′, we show that
after each replacement, the resulting sequent of this step is derivable
in JEMCS.

Let us show the case of an instance of (RM) with number i in an
essential family. The corresponding node in D′ is labelled by

A ⊃ B (RM)
[x]A ⊃ [v1 + . . .+ vi + . . .+ vn]B

where the v’s are justification terms and vi is a justification variable.
By I.H. we get A `CS B. By the Deduction Theorem we get `CS A→ B
and Internalization yields a proof term λ with `CS λ : (A → B). By
jm we get `CS [x]A → [m(λ, x)]B. Hence, again by the Deduction
Theorem, we find [x]A `CS [m(λ, x)]B and thus

[x]A `CS [v1 + . . .+ m(λ, x) + . . .+ vn]B

by axiom j+2. Substitute m(λ, x) for vi everywhere inD′. By Lemma 25
this does not affect the already established derivabilty results since CS
is schematic.

6 Conclusion

We have presented two new justification logics JECS and JEMCS as explicit
counterparts of the non-normal modal logics E and EM, respectively.
Having a justification analogue of the modal logic E is particularly important
in deontic contexts since, according to Faroldi [7], deontic modalities are
hyperintensional. Note that JECS is hyperintensional even if it includes the
axiom of equivalence je. Assume [e(λ)]F and let G be equivalent to F . Then
[e(λ)]G only holds if λ proves the equivalence of F and G. Thus, in general,
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for any λ with [e(λ)]F one can find a G such that G is equivalent to F but
[e(λ)]G does not hold.

On a technical level, the main novelty in our work is the introduction
of two types of terms. This facilitates the formulation of axiom je, which
corresponds to the rule of equivalence. Having this principle as an axiom
(and not as a rule) in justification logic is important to obtain Internalization
(Lemma 3).

We have established soundness and completeness of logics JECS and JEMCS

with respect to basic models, modular models and fully explanatory modular
models.

We have shown that for an axiomatically appropriate and schematic con-
stant specification CS, the justification logics JECS and JEMCS realize the
modal logics E and EM, respectively. The realization proof for JEMCS is
standard, whereas the realization proof for JECS required some new ideas
since the rule (RE) does not respect polarities of �-occurences.

A Soundness and completeness with respect

to basic models

Theorem 31 (Soundness w.r.t. basic models). The Logic JECS is sound with
respect to basic models. For an arbitrary constant specification CS and any
formula F ,

JECS ` F =⇒ ε 
 F for any basic model ε .

Proof. As usual, the proof is by induction on the length of JECS derivations
and a case distinction on the last rule. The only interesting case is when F
is an instance of je. Suppose

ε 
 λ : (A→ B) and ε 
 λ : (B → A) and ε 
 [e(λ)]A .

Thus we have

(A→ B) ∈ ε(λ) and (B → A) ∈ ε(λ) and A ∈ ε(e(λ)) .

By Definition 5 we find B ∈ ε(λ)� ε(e(λ)). Hence, by the definition of basic
model we get B ∈ ε(e(λ)), which is ε 
 [e(λ)]B.
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To prove the completeness theorem, we need to know that JECS is consis-
tent.

Lemma 32. For any constant specification CS, JECS is consistent.

Proof. As usual, one can show that JECS is a conservative extension of clas-
sical propositional logic. This immediately yields consistency of JECS.

Definition 33. A set of formulas Γ is called JECS-consistent if for each finite
subset Σ ⊆ Γ, we have 0CS

∧
Σ→ ⊥. The set Γ is maximal JECS-consistent

if Γ is consistent and none of its proper supersets is.

As usual, any consistent set can be extended to a maximal consistent set.

Lemma 34 (Lindenbaum). For each JECS-consistent set ∆, there exists a
maximal JECS-consistent set Γ ⊇ ∆.

Lemma 35. For any constant specification CS and maximal JECS-consistent
set Γ, there is a canonical basic model εc induced by Γ that is defined as
follows:

εc(P ) := 1, if P ∈ Γ and εc(P ) := 0, if P 6∈ Γ;

εc(λ) := {F | λ : F ∈ Γ};

εc(t) := {F | [t]F ∈ Γ}.

Proof. First we have to establish that εc is a basic evaluation. We only show
the condition

ε(λ)� ε(e(λ)) ⊆ ε(e(λ)). (14)

Suppose B ∈ ε(λ) � ε(e(λ)), which means there is a formula A ∈ εc(e(λ))
with (A → B) ∈ εc(λ) and (B → A) ∈ εc(λ). By the definition of εc, we
have

λ : (A→ B) ∈ Γ and λ : (B → A) ∈ Γ and [e(λ)]A ∈ Γ .

Since Γ is a maximal consistent set and

(λ : (A→ B) ∧ λ : (B → A))→ ([e(λ)]A→ [e(λ)]B)

is an instance of je, we obtain [e(λ)]B ∈ Γ. Hence B ∈ εc(e(λ)) and (14) is
established.
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Next, a truth lemma can be established as usual by induction on formula
complexity. For all formulas F ,

F ∈ Γ iff εc 
 F . (15)

Finally, we show that our basic evaluation εc is factive and hence a basic
model. Suppose εc 
 λ : F . Hence λ : F ∈ Γ. Since Γ is maximal consistent,
we get by axiom jt that F ∈ Γ. By (15) we conclude εc 
 F .

Using the Lindenbaum lemma, the canonical basic model and the es-
tablished truth lemma (15), we immediately get the following completeness
result.

Theorem 36 (Completeness w.r.t. basic models). Let CS be an arbitrary
constant specification. The logic JECS is complete with respect to basic models.
For any formula F ,

JECS ` F iff ε 
 F for all basic models ε for JECS .

B Soundness and completeness with respect

to modular models

Theorem 37 (Soundness and completeness w.r.t. modular models). Let CS
be an arbitrary constant specification. For each formula F we have

JECS ` F iff M 
 F for all JECS modular models M.

Proof. To prove soundness, supposeM = 〈W,N, ε〉 is a JECS modular model,
and JECS ` A. We need to show that A is true in every world w ∈ W . Assume
that εw is a basic model. Then by soundness with respect to basic models we
get εw 
 A and by (13) we conclude M, w 
 A. It remains to show that εw
indeed is a basic model, i.e. that it is factive. Suppose εw 
 λ : F . By (13)
we get M, w 
 λ : F . By factivitiy of modular models we get M, w 
 F
and by (13) again we conclude εw 
 F .

For completeness, suppose that JECS 0 F . Since JECS is complete with
respect to basic models, there is a JECS-basic model ε with ε 1 F . Now we
construct a quasi-model M := 〈{w}, N, ε′〉 with ε′w := ε and

N(w) = {|G|M | G ∈ ε′w(t), for any t ∈ JTm}.
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By (13) we find M, w 1 F . It only remains to show that M is a modular
model: Factivity follows immediately from (13) and the fact that ε is factive.
To show (JYB), we suppose F ∈ ε′w(t). By the definition of N we get
|F |M ∈ N(w), which means F ∈ �w.

C Soundness and completeness with respect

to fully explanatory modular models

The next step is to prove that JECS is sound and complete with respect to
fully explanatory JECS modular models. Before starting to prove the theorem,
we need an auxiliary notion:

Definition 38 (Proof set). Let MJE be the set of all maximal JECS-consistent
sets of formulas. We set

MJE := {Γ | Γ is a maximal JECS-consistent set } .

For any formula F we define ‖F‖ := {Γ | Γ ∈ MJE and F ∈ Γ}, called the
proof set of F .

Proof sets share a number of properties, which are given in the following
lemma.

Lemma 39. For formulas F,G following properties hold:

1. ‖F ∧G‖ = ‖F‖ ∩ ‖G‖;

2. ‖¬F‖ = MJE \ ‖F‖;

3. ‖F ∨G‖ = ‖F‖ ∪ ‖G‖;

4. ‖F‖ ⊆ ‖G‖ iff ` F → G;

5. ` (F ↔ G) iff ‖F‖ = ‖G‖;

6. ‖λ : G‖ ⊆ ‖G‖ for any proof term λ.

Proof. Let only show claim 4. The claim from right to left immediately
follows from closure of maximal consistent sets under modus ponens. For the
other direction, suppose ‖F‖ ⊆ ‖G‖, but not ` F → G. Then ¬(F → G)
is consistent and by Lindenbaum’s Lemma there is a maximal consistent set
Γ 3 ¬(F → G). This means F,¬G ∈ Γ. Since F ∈ Γ and ‖F‖ ⊆ ‖G‖, we
get G ∈ Γ, which contradicts ¬G ∈ Γ.
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Theorem 40 (Soundness and completeness for fully explanatory modular
models). Let CS be an axiomatically appropriate constant specification. JECS

is sound and complete with respect to fully explanatory JECS modular models.

Proof. Soundness is a direct consequence of soundness for the class of JECS

modular models.
To prove completeness, we define a canonical model Mc := 〈W c, N c, εc〉

by

• W c := MJE ;

• N c : W c → P(P(W c)), such that for each Γ ∈ W c,

‖F‖ ∈ N c(Γ) iff [e(γ)]F ∈ Γ for some e(γ) ∈ JTm ;

• εcΓ(t) := {F | [t]F ∈ Γ} and εcΓ(λ) := {F | λ : F ∈ Γ}.

Before establishing that this canonical model is a fully explanatory mod-
ular model, we show that the neighborhood function is well-defined. The
issue is that different formulas may have the same proof set. Thus we need
to show the following lemma.

Lemma 41. Let CS be axiomatically appropriate. The neighborhood mapping
N c is well-defined: for any Γ ∈ MJE and any formulas F,G, if ‖F‖ ∈ N c(Γ)
and ‖F‖ = ‖G‖, then there is a term e(λ) ∈ JTm such that [e(λ)]G ∈ Γ.

Proof. Let F,G be two formulas such that ‖F‖ = ‖G‖. For some Γ ∈ MJE,
suppose ‖F‖ ∈ N c(Γ). By the definition of the canonical model we have
[e(γ)]F ∈ Γ for some e(γ) ∈ JTm. By Lemma 39, we have `JE F ↔ G and
so `JE G→ F and `JE F → G. Since CS is axiomatically appropriate, there
are proof terms δ1, δ2 such that `JE δ1 : (F → G) and `JE δ2 : (G→ F ). By
the j+ axiom, there is a term λ = (δ1 + δ2 + γ) such that `JE λ : (F → G)
and `JE λ : (G→ F ). By maximal consistency of Γ we get

([e(λ)]F → [e(λ)]G) ∈ Γ (16)

Further, we get by axiom je+ and maximal consistency of Γ that [e(λ)]F ∈ Γ
and thus by (16) we conclude [e(λ)]G ∈ Γ.

Next we can establish the truth lemma.

Lemma 42 (Truth lemma). For each formula F , we have |F |Mc
= ‖F‖.
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Proof. As usual the proof is by induction on the structure of F . We only show
the case when F is [t]G. We have the following equivalences: Γ ∈ |[t]G|Mc

iff Mc,Γ 
 [t]G iff G ∈ εcΓ(t) iff [t]G ∈ Γ iff Γ ∈ ‖[t]G‖.

Now we show that the canonical model is a modular model. First, we show
thatW c 6= ∅. Recall that by Lindenbaum’s Lemma, for every consistent set of
formulas Γ, there exist a maximally consistent set of formulas that contains
Γ. Since the empty set is consistent, by Lindenbaum’s Lemma, there is a
maximal consistent set that contains the empty set and is an element of W c.

Next we show factivity. Suppose Mc,Γ 
 λ : G. By the truth lemma we
get λ : G ∈ Γ. Since Γ is maximally consistent, we obtain by axiom jt that
G ∈ Γ. Again by the truth lemma we conclude Mc,Γ 
 G.

Now we show that the canonical model satisfies justification yields be-
lief (JYB). Suppose F ∈ εcΓ(t) for some justification term t, some formula F ,
and some Γ ∈ W c. The term t has the form e(λ) and by the definition of
εcΓ we find [e(λ)]F ∈ Γ. By the definition of N c we obtain ‖F‖ ∈ N c(Γ).
Thus, using the the truth lemma, we get |F |Mc ∈ N c(Γ). Thus (JYB) is
established.

It remains to show that the canonical model is fully explanatory. Suppose
|F |Mc ∈ N c(Γ) for some formula F and some Γ ∈ W c. By the truth lemma
we find ‖F‖ ∈ N c(Γ). By the definition of N c, this implies [t]F ∈ Γ for some
justification term t. By the definition of εcΓ we finally conclude F ∈ εcΓ(t).

D Soundness and completeness with respect

to monotonic modular models

Theorem 43. Let CS be an axiomatically appropriate constant specification.
JEMCS is sound and complete with respect to fully explanatory JEMCS mono-
tonic modular models.

Proof. For any set U ⊆ P(W ), we say U is supplemented or monotonic, if
X ∈ U and X ⊆ Y ⊆ W then Y ∈ U . So for any X ⊆ P(W ), we denote
the closure of X under supplementation by (X )mon. Moreover, a proof set is
defined as:

‖F‖ := {Γ | Γ ∈ MJEM and F ∈ Γ},

where MJEM is the set of all maximal JEMCS-consistent sets.
Now we define the canonical model Mc

mon := 〈W c, N c
mon, ε

c〉, such that:
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• W c := MJEM ;

• N c
mon := (N c

min)mon, such that:

N c
min(Γ) = {‖F‖ | [t]F ∈ Γ, for some t ∈ JTm} ;

• εcΓ(t) := {F | [t]F ∈ Γ} and εcΓ(λ) := {F | λ : F ∈ Γ}.

We will only show that N c
min is well-defined and that Mc

mon is fully ex-
planatory. The rest of the completness proof is similar to the case for JECS.

To establish that N c
min is well defined, assume that F,G are two formulas

such that ‖F‖ = ‖G‖ with ‖F‖ ∈ N c(Γ) for some Γ ∈ MJEM. Thus [s]F ∈ Γ
for some justification term s. By Lemma 39 we find `JEMCS

F → G. Since CS
is axiomatically appropriate, there is a proof term λ with `JEMCS

λ : (F → G).
By axiom jm, we conclude [m(λ, s)]G ∈ Γ.

To show thatMc
mon is fully explanatory, suppose |G|Mc

mon ∈ N c
mon(Γ) for

some formula G and some Γ ∈ MJEM. By truth lemma for Mc
mon, we have

‖G‖ ∈ N c
mon(Γ). By definition of N c

mon it means that either ‖G‖ ∈ N c
min(Γ)

or there exists a formula H such that ‖H‖ ∈ N c
min(Γ) and ‖H‖ ⊆ ‖G‖. In the

former case by definition of canonical model [t]G ∈ Γ for some t ∈ JTm. In
the latter case, we find [t]H ∈ Γ for some t ∈ JTm. Moreover, by Lemma 39
we obtain `JEMCS

H → G. Since CS is axiomatically appropriate, there is a
proof term λ such that `JEMCS

λ : (H → G). By axiom jm, there is a term
m(λ, t) such that `JEMCS

[t]H → [m(λ, t)]G. We conclude [m(λ, t)]G ∈ Γ.

E Examples of Realization

Example 44. We realize the following theorem of E in JE:

�A→ (�B → �A).

Consider the derivation in E:

A ⊃ A A ⊃ A (RE)
�A ⊃ �A (w ⊃)

�A,�B ⊃ �A
(⊃→)

�A ⊃ �B → �A (⊃→)
⊃ �A→ (�B → �A)
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Let λ be a proof term such that λ : (A → A) is provable. We find the
following realization. Note that (je) denotes several reasoning steps.

A ⊃ A A ⊃ A (je)
[e(λ)]A ⊃ [e(λ)]A

(w ⊃)
[e(λ)]A, [e(ξ0)]B ⊃ [e(λ)]A

(⊃→)
[e(λ)]A ⊃ [e(ξ0)]B → [e(λ)]A

(⊃→)
⊃ [e(λ)]A→ ([e(ξ0)]B → [e(λ)]A)

Note that this is already a simplification. Following the realization procedure
exactly as given in the proof, would yield

[e(λ+ λ)]A→ ([e(ξ0)]B → [e(λ+ λ)]A).

Example 45. Realize ��A→ ��A in JE. We find the following derivation
in E:

A ⊃ A A ⊃ A (RE)
�A ⊃ �A

A ⊃ A A ⊃ A (RE)
�A ⊃ �A (RE)

��A ⊃ ��A

We obtain the following realization, where again λ is a proof term with
λ : (A→ A) and κ is a proof term with κ : ([e(λ+λ)]A ⊃ [e(λ+λ)]A) being
provable.

A ⊃ A A ⊃ A
[e(λ+ λ)]A ⊃ [e(λ+ λ)]A

A ⊃ A A ⊃ A
[e(λ+ λ)]A ⊃ [e(λ+ λ)]A

[e(κ)][e(λ+ λ)]A ⊃ [e(κ)][e(λ+ λ)]A

Again, we used a simplification. The exact procedure would yield

[e(κ+ κ)][e((λ+ λ) + (λ+ λ))]A ⊃ [e(κ+ κ)][e((λ+ λ) + (λ+ λ)]A.

Example 46. Realize �(A→ A)→ �(B → B) by JE. We find the following
derivation in E:

B ⊃ B (w ⊃)
A→ A,B ⊃ B

(⊃→)
A→ A ⊃ B → B

A ⊃ A (w ⊃)
B → B,A ⊃ A

(⊃→)
B → B ⊃ A→ A (RE)

�(A→ A) ⊃ �(B → B)
(⊃→)

⊃ �(A→ A)→ �(B → B)
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Let λ1 and λ2 be proof terms such that λ1 : ((A → A) → (B → B)) and
λ2 : ((B → B)→ (A→ A)) are provable. We find the following realization:

B ⊃ B (w ⊃)
A→ A,B ⊃ B

(⊃→)
A→ A ⊃ B → B

A ⊃ A (w ⊃)
B → B,A ⊃ A

(⊃→)
B → B ⊃ A→ A (je)

[e(λ1 + λ2)](A→ A) ⊃ [e(λ1 + λ2)](B → B)
(⊃→)

⊃ [e(λ1 + λ2)](A→ A)→ [e(λ1 + λ2)](B → B)

Example 47. We realize the axiom scheme M : �(A∧B)→ (�A∧�B) in
JEM. We start with its derivation in EM:

A ⊃ A (w ⊃)
A ∧B ⊃ A (RM)

�(A ∧B) ⊃ �A

B ⊃ B (w ⊃)
A ∧B ⊃ B (RM)

�(A ∧B) ⊃ �B
(→ ∧)

�(A ∧B) ⊃ (�A ∧�B)
(⊃→)

⊃ �(A ∧B)→ (�A ∧�B)

We find the following realization in JEM:

A ⊃ A (w ⊃)
A ∧B ⊃ A (⊃→)
A ∧B → A (jm)

[x](A ∧B) ⊃ [m(λ, x)]A

B ⊃ B (w ⊃)
A ∧B ⊃ B (⊃→)
A ∧B → B (jm)

[x](A ∧B) ⊃ [m(κ, x)]B
(→ ∧)

[x](A ∧B) ⊃ ([m(λ, x)]A ∧ [m(κ, t)]B)
(⊃→)

⊃ [x](A ∧B)→ ([m(λ, x)]A ∧ [m(κ, t)]B)

where λ, κ are proof terms with

`JEM λ : (A ∧B → A) and `JEM κ : (A ∧B → B) .

Example 48. Now we consider the formula �A∨�B → �(A∨B) with the
following derivation:

A ⊃ A (⊃ w)
A ⊃ A,B

(→ ∨)
A ⊃ A ∨B (RM)

�A ⊃ �(A ∨B)

B ⊃ B (⊃ w)
B ⊃ A,B

(→ ∨)
B ⊃ A ∨B (RM)

�B ⊃ �(A ∨B)
(∨ →)

�A ∨�B ⊃ �(A ∨B)

We find the following realization tree:
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A ⊃ A (⊃ w)
A ⊃ A,B

(→ ∨)
A ⊃ A ∨B (⊃→)⊃ A→ A ∨B (jm)

[x]A ⊃ [v1 + v2](A ∨B)

B ⊃ B (⊃ w)
B ⊃ B,A

(→ ∨)
B ⊃ A ∨B (⊃→)⊃ B → A ∨B (jm)

[y]B ⊃ [v1 + v2](A ∨B)
(∨ →)

[x]A ∨ [y]B ⊃ [v1 + v2](A ∨B)

Now we substitute the provisional variables v1, v2 by terms v1 = m(λ, x) and
v2 = m(κ, y) where λ, κ are proof terms that

`JEM λ : (A→ A ∨B) and `JEM κ : (B → A ∨B) .

Hence we obtain

[x]A ∨ [y]B ⊃ [m(λ, x) + m(κ, y)](A ∨B) .

Example 49. We realize formula �(�A ∧ �B) → (��A ∧ ��B) in JEM.
We start with the following derivation where we do not mention all rule
applications.

A ⊃ A (RM)
�A ⊃ �A (w ⊃)

�A ∧�B ⊃ �A (RM)
�(�A ∧�B) ⊃ ��A

B ⊃ B (RM)
�B ⊃ �B (w ⊃)

�A ∧�B ⊃ �B (RM)
�(�A ∧�B) ⊃ ��B

(→ ∧)
�(�A ∧�B) ⊃ ��A ∧��B

(⊃→)
⊃ �(�A ∧�B)→ (��A ∧��B)

We find the following derivation for suitable proof terms λ1, λ2, γ1, γ2:

A ⊃ A (jm)
[x]A ⊃ [m(λ1, x)]A

(w ⊃)
[x]A ∧ [y]B ⊃ [m(λ1, x)]A

(jm)
[z]([x]A ∧ [y]B) ⊃

[m(γ1, z)][m(λ1, x)]A

B ⊃ B (jm)
[y]B ⊃ [m(λ2, y)]B

(w ⊃)
[x]A ∧ [y]B ⊃ [m(λ2, y)]B

(jm)
[z]([x]A ∧ [y]B) ⊃

[m(γ2, z)][m(λ2, y)]B
(→ ∧)

[z]([x]A ∧ [y]B) ⊃ ([m(γ1, z)][m(λ1, x)]A ∧ [m(γ2, z)][m(λ2, y)]B)
(⊃→)

⊃ ([z]([x]A ∧ [y]B)→ ([m(γ1, z)][m(λ1, x)]A ∧ [m(γ2, z)][m(λ2, y)]B))
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