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Abstract

In formal epistemology, group knowledge is often modelled as the knowledge that
the group would have, if the agents shared all their individual knowledge. How-
ever, this interpretation does not account for relations between agents. In this
work, we propose the notion of synergistic knowledge which makes it possible
to model those relationships. We interpret synergistic knowledge on simplicial
models that are based on semi-simplicial sets. As examples, we investigate the
use of consensus objects and the problem of the dining cryptographers. Further-
more, we introduce the axiom system Syn for synergistic knowledge and show
that it is sound and complete with respect to the presented simplicial models.

Keywords: Distributed Knowledge, Synergy, Modal Logic

1. Introduction

The successful application of combinatorial topology to distributed systems
has sparked the interest of modal logicians. A topological model interprets the
different configurations of a distributed system as an abstract structure called a
simplicial complex. Within a simplicial complex, one can express which global
states are indistinguishable to processes. If a process cannot tell two configu-
rations apart, then, for any distributed protocol, it must behave the same in
both states. Naturally, this approach, exemplified by Herlihy, Kozlov, and Ra-
jsbaum [15], has parallels with formal epistemology. Hence, studying simplicial
interpretations of modal logic is a novel and promising subject.

Due to its application to well known problems such as agreement (cf. Halpern
and Moses [13]), modal logic has been proven to be vital for the formal analysis
of distributed Algorithms. Models for modal logic are usually based on a possible
worlds approach, where the modal operator � is evaluated on Kripke frames. A
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Kripke frame is a graph whose vertices represent worlds, i.e., global states, and
whose edges depict an indistinguishability relation. In a world w, a formula φ is
known, denoted by �φ, if and only if φ is true in each world indistinguishable
from w. These frames can be extended to multi-agent systems by introducing an
indistinguishability relation for each agent. A formula φ is distributed knowledge
of a group, first introduced by Halpern and Moses [13], if and only if φ is true
in all worlds that cannot be distinguished by any member of the group.

Some recent publications in logic have explored simplicial complexes as mod-
els for modal logics with multiple agents. In its simplest form, pure simplicial
complexes describe settings in which agents never die and impure complexes are
capable of capturing an agent’s death. Goubault, Ledent, and Rajsbaum [11]
pioneered the analysis of simplicial interpretations and laid the foundation for
pure complexes as epistemic models. Work regarding impure complexes was con-
ducted independently by van Ditmarsch, Kuznets, and Randrianomentsoa [7]
and by Goubault, Ledent, and Rajsbaum [12]. The latter work shows the
equivalence between their simplicial models and Kripke models for the logic
KB4n, whereas van Ditmarsch, Kuznets, and Randrianomentsoa [7] propose a
three-valued logic in which formulas that reference dead agents might be un-
defined. Van Ditmarsch, Kuzents, and Randrianomentsoa [6] further compare
two-valued with three-valued semantics and categorise simplicial models accord-
ingly. Lastly, Goubault et al. [10] generalise impure complexes based on their
containment of sub-worlds, i.e., worlds whose set of alive agents is contained in
another indistinguishable world’s set of alive agents.

As pointed out by van Ditmarsch et al. [5], improper1 Kripke frames cannot
be depicted by simplicial complexes. However, relaxing the properties of sim-
plicial complexes might enable us to do so and lead to novel notions of group
knowledge. One example of a slightly relaxed version of a simplicial complex is
a semi-simplicial set. Simply put, semi-simplicial sets allow us to model global
states that consist of the same local states, but differ in their meaning. These
kind of scenarios arise in distributed systems when accessing concurrent objects.
For example, consider two processes P and Q that concurrently enqueue their
values vP and vQ to a shared queue. Upon completion, each process locally
knows that the queue contains its submitted value. However, they do not know
whose value was enqueued first, i.e., P and Q cannot distinguish the worlds
where the state of the queue is vP vQ or vQvP . The complex below in Figure 1
illustrates this scenario. The local state of a process is represented by a vertex
that is labelled accordingly and global states correspond to edges. The processes
cannot distinguish between the global states because their local states can be
part of both. That is, vQ and vP belong to both edges. However, we must not
restrict the notion of indistinguishability to containing vertices alone. Instead,
we can look at higher-order connectivity as well. By doing so, we introduce a
new kind of knowledge that has not yet been explored.

1A frame is proper if any two worlds with the same set of alive agents can be distinguished
by at least one of them.
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vQ vP

vP vQ

vQvP

Figure 1: The two processes P and Q cannot distinguish between worlds vP vQ and vQvP .

In this paper, we present a semantics for epistemic reasoning on simpli-
cial models that are based on semi-simplicial sets and introduce the synergistic
knowledge operator [G]. Our notion of synergistic knowledge is capable of de-
scribing scenarios in which a group of agents can know more than just the
consequences of their pooled knowledge. Different from the higher-order inter-
pretation of distributed knowledge by Goubault et al. [9], which analyses the
knowledge of a set of agents, we unfold relations within a group and analyse its
knowledge with respect to the internal structure of the group. With this inter-
pretation, the knowledge of two seemingly equal groups can differ due to internal
relations between agents. Limiting oneself to sets of agents cannot model this
without introducing hybrid agents that represent relations between agents.

Given a finite set of agents Ag, we introduce a new modality [G], where the
set G ⊆ Pow(Ag) \ {∅} is called an agent pattern. Agent patterns are best un-
derstood representing relations within a group. For example, if G = {{a, b, c}},
then, the agents a, b, and c mutually benefit from each other and [G] reasons
about the synergy of the three agents; whereas if G = {{a}, {b}, {c}}, the modal-
ity [G] describes traditional distributed knowledge. When interpreting the lan-
guage of synergistic knowledge on simplicial models based on semi-simplicial
sets, [G]φ is true in a simplex S if and only if φ is true in all simplices that
intersect with S in G. For example, in Figure 1, the agent pattern {{P,Q}} can
distinguish between vP vQ and vQvP because the two edges are different.

Another contribution of this work is the axiom system Syn. We show that
Syn is sound and complete with respect to our simplicial models. Our proof
employs a variant of the unravelling method used to establish completeness for
traditional distributed knowledge (cf. Fagin et al. [8] and Goubault et al. [9]).
However, our logic has new axioms that close knowledge under sub-simplices.
For example, we cannot only rely on the usual monotonicity axiom that states
[G]ϕ→ [H ]ϕ, whenever G ⊆ H . Instead, we need that

[{B}]φ→ [G]φ if there exists A ∈ G and B ⊆ A. (1)

Most notably, (1) can be proved by adding an axiom enforcing that adding agent
subpatterns does not create new insights, i.e.,

[G ∪ {B}]φ→ [G]φ if there exists A ∈ G and B ⊆ A.
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After introducing the syntax and semantics of Syn, we proceed by proving sound-
ness and completeness of Syn with respect to simplicial models. Soundness can
be proven right away, but completeness is more involved. To prove complete-
ness, we first introduce different types of Kripke models and show that a weaker
version of Syn, namely Syn-, is sound and complete with respect to those mod-
els. After that, we show that our proofs can be extended to Kripke models that
are equivalent to simplicial models which are based on semi-simplicial sets. The
difference between Syn and Syn- is that Syn characterises proper models.

We first introduce κ-models, which are similar to the standard KB4n Kripke
models. It is worth noting that, κ-models are pseudo-models because they do
not satisfy standard group knowledge. That is, given two agent patterns G and
H , if both cannot distinguish two worlds, neither can their union. However,
not satisfying standard group knowledge lets us prove soundness and complete-
ness of Syn- with respect to κ-models using a canonical model construction.
Subsequently, we present δ-models, which are κ-models that satisfy standard
group knowledge. We use unravelling of κ-models to show that Syn- is sound
and complete with respect to δ-models. In a last step, we extend the previous
proofs to proper δ-models which shows soundness and completeness of Syn with
respect to them. In order to show completeness of Syn with respect to simplicial
models, we develop a novel construction that takes a proper δ-frame as input
and transforms it into an equivalent complex. This implies completeness of Syn
with respect to our simplicial models. The constructive nature of the translation
intuitively demonstrates the relation between the two semantic approaches.

Section 2 presents our notion of a simplicial complex together with an in-
distinguishability relation for synergistic knowledge. In Section 3 we introduce
the axiom system Syn and show its soundness with respect to the earlier defined
simplicial models. Section 4 accompanies the presented theory with examples
from distributed computing. In Section 5 we prove that Syn is complete with
respect to simplicial models. Lastly, in Section 6 and Section 7 we conclude our
work and discuss future research directions.

2. Simplicial structures

In this section, we introduce simplicial structures based on semi-simplicial
sets. Let Ag denote the set of finitely many agents and let

Agsi = {(A, i) | A ⊆ Ag and i ∈ N}.

Let S ⊆ Agsi. An element (A, i) ∈ S is maximal in S if and only if

∀(B, j) ∈ S.|A| ≥ |B|, where |X | denotes the cardinality of the set X .

Definition 1 (Simplex). Let ∅ 6= S ⊆ Agsi. S is a simplex if and only if

S1: The maximal element is unique, i.e.,

if (A, i) ∈ S and (B, j) ∈ S are maximal in S, then A = B and i = j.

The maximal element of S is denoted as max(S).
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S2: S is uniquely downwards closed, i.e., for (B, i) ∈ S and C ⊆ B

∃!j ∈ N.(C, j) ∈ S, where ∃!j means that there exists exactly one j.

S3: S contains nothing else, i.e.,

(B, i) ∈ S and (A, j) = max(S) implies B ⊆ A.

Definition 2 (Complex). Let C be a set of simplices. C is a complex if and
only if

C: For any S, T ∈ C, if there exist A ⊆ Ag and i ∈ N with (A, i) ∈ S and
(A, i) ∈ T , then

for all B ⊆ A and all j (B, j) ∈ S iff (B, j) ∈ T.

Lemma 1. Let C be a complex and S, T ∈ C. We find

max(S) = max(T ) implies S = T.

Proof. We show S ⊆ T . The other direction is symmetric. Let (A, i) = max(S).
Assume (B, j) ∈ S. Because of S3, we have B ⊆ A. By Condition C, we
conclude (B, j) ∈ T .

Whenever it is clear from the context, we abbreviate ({a1, ..., an}, i) as
a1...ani. Furthermore, we omit elements of the form (∅, i) and may use a row
(or a mixed row-column) notation to emphasize simplices. For example,













ab0
a0
b0






,







ab1
a0
b1













is a complex that contains 2 simplices. Whenever we refer to a simplex within a
complex, we write 〈a1, .., ani〉 for the simplex with maximal element ({a1, ..., an}, i).
Condition C guarantees that this notation is well-defined.

Remark 1. Complexes can contain sub-simplices. That is, if S ∈ C, then there
may exist T ∈ C with S ⊆ T . An example of such a complex is

C =













abc0
ab0, ac0, bc0
a0, b0, c0






,

{
ab0
a0, b0

}





.

Definition 3 (Indistinguishability). Let S ⊆ Agsi, we define

S◦ = {A | ∃i ∈ N : (A, i) ∈ S}.

An agent pattern G is a subset of Pow(Ag) \ {∅}. An agent pattern G cannot
distinguish between two simplices S and T , denoted by S ∼G T , if and only if
G ⊆ (S ∩ T )◦.
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We will now prove some properties of ∼G that motivate it as an indistin-
guishability relation between simplices.

Lemma 2. ∼G is transitive and symmetric.

Proof. Symmetry immediately follows from the fact that set intersection is
commutative. To show transitivity, let S, T, U be simplices with S ∼G T and
T ∼G U , i.e.,

G ⊆ (S ∩ T )◦ (2)

G ⊆ (T ∩ U)◦ (3)

Let A ∈ G. Because of (2), there exists i with

(A, i) ∈ S and (A, i) ∈ T. (4)

Because of (3), there exists j with

(A, j) ∈ T and (A, j) ∈ U. (5)

From (4), (5), and Condition S2 we obtain i = j. Thus by (4) and (5), we get
A ∈ (S ∩ U)◦. Since A was arbitrary in G, we conclude G ⊆ (S ∩ U)◦.

Lemma 3. Let G be an agent pattern and

G⋆ := {{a} | ∃A ∈ G and a ∈ A}.

Let SG be a maximal set of simplices such that for any S ∈ SG we have G⋆ ⊆ S◦.
The indistinguishability relation ∼G is reflexive on SG×SG and empty otherwise.

Proof. We first show reflexivity. If G = ∅, then trivially G ⊆ (S ∩ S)◦ for any
S. Assume G 6= ∅. Let S ∈ SG. For each B ∈ G, we have to show that
B ∈ (S ∩ S)◦, i.e., that

there exists i with (B, i) ∈ S. (6)

Let (A, i) := max(S). Let b ∈ B. Because of G⋆ ⊆ S◦, there exists l such that
({b}, l) ∈ S. By S3 we get b ∈ A. Since b was arbitrary in B, we get B ⊆ A.
By S2 we conclude that (6) holds and symmetry is established.

We now show that ∼G is empty otherwise. Let S be a simplex such that
G⋆ * S◦ and let T be an arbitrary simplex. Then there exists a,A with a ∈ A ∈ G
and {a} /∈ S◦, i.e.,

for all i, ({a}, i) /∈ S. (7)

Suppose towards a contradiction that

G ⊆ (S ∩ T )◦ (8)

Because of A ∈ G we get A ∈ (S ∩ T )◦. Hence A ∈ S◦, i.e., there exists l with
(A, l) ∈ S. With S2 and {a} ⊆ A we find that there exists j with ({a}, j) ∈ S.
This is a contradiction to (7). Thus (8) cannot hold.
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Corollary 1. ∼G is an equivalence relation on SG × SG.

Lemma 4. Let C be a complex and S, T ∈ C. Further, let A ∈ (S ∩ T )◦ and
B ⊆ A. We find B ∈ (S ∩ T )◦.

Proof. From A ∈ (S ∩ T )◦, we obtain that there exists i such that (A, i) ∈ S
and (A, i) ∈ T . From S2 we find that there exists j such that (B, j) ∈ S. Thus,
by C, we get (B, j) ∈ T and we conclude B ∈ (S ∩ T )◦.

Corollary 2. Let G be an agent pattern and let A,B ⊆ Ag such that B ⊆ A ∈ G.
It holds that

∼G∪{B} = ∼G .

Lemma 5. Let G be an agent pattern. It holds that
⋂

B∈G

∼{B} = ∼G . (D)

Proof. (S, T ) ∈
⋂

B∈G ∼{B} iff for each B ∈ G, we have B ∈ (S ∩ T )◦ iff
G ⊆ (S ∩ T )◦ iff S ∼G T .

Remark 2 (Standard group knowledge). The property (D) is also referred to
as standard group knowledge.

Lemma 6 (Anti-Monotonicity). G ⊆ H implies ∼H⊆∼G.

Proof. Assume G ⊆ H . For any two simplices S and T with S ∼H T , we have
G ⊆ H ⊆ (S ∩ T )◦ by Definition 3 and hence S ∼G T .

The next lemma states that adding synergy to an agent pattern makes it
stronger in the sense that it can distinguish more simplices.

Lemma 7. Let H1, H2, . . . , Hn ⊆ Ag with n ≥ 2 We have

∼{H1∪H2,...,Hn} ⊆ ∼{H1,H2,...,Hn} .

Proof. From Lemma 4 and Lemma 6 we find that

∼{H1∪H2,...,Hn} = ∼{H1∪H2,H1,H2,...,Hn} ⊆ ∼{H1,H2,...,Hn} .

In traditional Kripke semantics, distributed knowledge of a set of agents is
modelled by considering the indistinguishability relation that is given by the
intersection of the indistinguishability relations of the individual agents. The
following lemma states that in our framework, this intersection corresponds to
the agent pattern consisting of singleton sets for each agent.

Lemma 8. Let G ⊆ Ag and H =
⋃

a∈G{{a}}. We have
⋂

a∈G

∼{{a}} = ∼H .

Proof. (S, T ) ∈
⋂

a∈G ∼{{a}} iff for each a ∈ G, we have {a} ∈ (S ∩ T )◦ iff (by
the definition of H) H ⊆ (S ∩ T )◦ iff S ∼H T .
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3. Logic

Let Prop be a countable set of atomic propositions. The logic of synergistic
knowledge is a normal modal logic that includes a modality [G] for each agent
pattern G. Formulas of the language of synergistic knowledge L are inductively
defined by the following grammar:

φ ::= p | ¬φ | φ ∧ φ | [G]φ

where p ∈ Prop and G is an agent pattern. The remaining Boolean connectives
are defined as usual. In particular, we set ⊥ := p ∧ ¬p for some fixed p ∈ Prop,
and we write alive(G) for ¬[G]⊥. If G is an agent pattern, then GC denotes its
complement. That is,

GC := {H ∈ Pow(Ag) \ {∅} | ∄B ∈ G.H ⊆ B}.

Moreover, we define

dead(G) :=
∧

B∈G

¬alive({B}).

Notice that dead(G) 6≡ ¬alive(G). Indeed, dead(G) expresses that for each
B ∈ G, the pattern {B} is dead, whereas ¬alive(G) is true if some {B} ⊆ G is
dead. The axiom system Syn consists of the axioms:

all propositional tautologies (Taut)

[G](φ→ ψ)→ ([G]φ→ [G]ψ) (K)

φ→ [G]¬[G]¬φ (B)

[G]φ→ [G][G]φ (4)

alive(G)→ ([G]φ→ φ) (T)

alive(G) ∧ dead(GC) ∧ φ→ [G](dead(GC)→ φ) (P)
∨

G⊆Pow(Ag)\{∅}

alive(G) (NE)

[G]φ→ [H ]φ if G ⊆ H (Mono)

[G ∪ {B}]φ→ [G]φ if there exists A ∈ G and B ⊆ A (Equiv)

alive(G) ∧ alive(H)→ alive(G ∪H) (Union)

alive(G)→ alive({A ∪B}) if A,B ∈ G (Clo)

and the inference rules modus ponens (MP) and [G]-necessitation ([G]-Nec).
We write ⊢ ϕ to denote that ϕ ∈ L can be deduced in the system Syn.

A A→ B

B
(MP)

A

[G]A
([G]-Nec)

Notice that
alive(G) ∧ dead(GC) ∧ φ→ [G]φ, (9)
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is not derivable in Syn, because, as mentioned in Remark 1, complexes can
contain sub-worlds. In order to derive Equation (9) we would have to add

alive(G) ∧ dead(GC)→ [G]dead(GC)

to Syn (cf. Goubault et al. [10]). However, if Ag ∈ G, we have GC = ∅, i.e.,

alive(G) ∧ φ→ [G]φ

because the empty conjunction evaluates to ⊤.

Definition 4 (Simplicial model). A simplicial model C = (C, L) is a pair such
that

1. C is a complex;

2. L : C→ Pow(Prop) is a valuation.

Definition 5 (Truth). Let C = (C, L) be a simplicial model, S ∈ C, and φ ∈ L.
We define C, S σ φ inductively by

C, S σ p iff p ∈ L(S)

C, S σ ¬φ iff C, S 6σ φ

C, S σ φ ∧ ψ iff C, S σ φ and C, S σ ψ

C, S σ [G]φ iff S ∼G T implies C, T σ φ for all T ∈ C.

We write C σ φ, if C, w σ φ for all S ∈ C. A formula φ is σ-valid, denoted
by σ φ, if C σ φ for all models C. Whenever it is clear from the context we
omit the subscript σ.

Corollary 3 is an immediate consequence of previously introduced Corol-
lary 1. It relates the formula alive(G) to the structure of the underlying complex
as expected.

Corollary 3. Let C be a simplicial model. For any agent pattern G, we find

C, S σ alive(G) iff S ∼G S.

Soundness of Syn with respect to simplicial models follows as usual. We
present the proof of completeness in Section 5.

Theorem 1 (Soundness). ⊢ ϕ implies σ ϕ.

Proof. We only show (T), (P), (NE), (Union), (Clo), (Mono), (Equiv), and
([G]-Nec). Let C = (C, L) be an arbitrary model.

1. (T): Consider a world S ∈ C and assume that C, S σ alive(G) and
C, S σ [G]ϕ. By Corollary 3, we find S ∼G S and thus C, S σ ϕ because
C, S σ [G]ϕ.
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2. (P): Consider a world S ∈ C and assume C, S  alive(G) ∧ dead(GC) ∧ φ
for some φ ∈ L. By assumption, G must have an unique maximal element.
Indeed, towards a contradiction, assume that it is not the case and G has
the maximal elements B1, B2, ..., Bn. Consider now

B =
n⋃

i=1

Bi.

It is straightforward to verify that C, S  alive({B}). However, since
B ∈ GC , by assumption, it holds that C, S  dead({B}) which is a con-
tradiction. Additionally, by S3, the maximal element of G, say A, is the
set of all agents alive in S. Let T ∈ C be such that S ∼G T and assume
C, T  dead(GC). By transitivity of ∼G and Corollary 3, we have that
C, T  alive(G). Thus, by the same reasoning as before, A is the set of all
alive agents for T as well, i.e., max(S) = (A, i) and max(T ) = (A, i) for
some i ∈ N. Finally, by Lemma 1, we find that S = T , and thus C, T  φ.

3. (NE): Follows because simplices are not empty.

4. (Union): Consider a world S ∈ C and assume that C, S σ alive(G) and
C, S σ alive(H). By Corollary 3 it holds that S ∼G S and S ∼H S. By
Lemma 5 we have

∼G∪H=
⋂

B∈G∪H

∼{B}=

(
⋂

B∈G

∼{B}

)

∩

(
⋂

B∈H

∼{B}

)

,

and thus S ∼G∪H S and C, S σ alive(G ∪H).

5. (Clo): Consider a world S ∈ C and assume that C, S σ alive(G), and
let A,B ∈ G. By Lemma 4 we find S ∼{A} S and S ∼{B} S, i.e., there
exist i, j ∈ N such that (A, i) ∈ S and (B, j) ∈ S. Furthermore, let
(C, k) = max(S). By S3, we find A ⊆ C as well as B ⊆ C, and thus
A ∪ B ⊆ C. Since S is downwards closed by S2, there exists k ∈ N such
that ({A∪B}, k) ∈ S. Hence, S ∼{A∪B} S and C, S σ alive({A∪B}) by
Lemma 11.

6. (Mono): Follows from Lemma 6.

7. (Equiv): Follows from Corollary 2.

Lastly, we show ([G]-Nec). Let A ∈ L and assume that A is σ-valid, i.e.,
for any simplicial model C = (C, L) and S ∈ C, we have C, S σ A. Let
S ∈ C be arbitrary. By assumption, it holds that for all T with S ∼G T , we
have C, T σ A. Thus, C, S σ [G]A by the definition of truth. Since S was
arbitrary, we have C σ [G]A. Lastly, since C was arbitrary, [G]A is σ-valid,
i.e., σ [G]A.
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4. Examples

This section illustrates the application of our logic to distributed systems
with the help of two examples. We interpret synergy as having access to shared
primitives in both examples. In Example 1, the shared primitive is a consensus
object and in Example 2 it is a shared coin. Given three agents, Example 1
captures the idea that for some applications, the agent pattern must include
the area of the triangle and not just its edges. Thus, Example 1 shows the
difference between mutual and pairwise synergy. A similar example can be
found in the extended abstract of this work [1]. Example 2 demonstrates that
the patterns {{a, b}, {a, c}}, {{a, b}, {b, c}}, and {{b, c}, {a, c}} are weaker than
the pattern {{a, b}, {a, c}, {b, c}}. In other words, pairwise synergy between all
agents is stronger than pairwise synergy among some agents.

Regarding notation, from now on we will omit the set parentheses for agent
patterns whenever it is clear from the context and write for example [abc, ab, ac]
instead of [{{a, b, c}, {a, b}, {a, c}}].

Example 1 (Consensus number). A n-consensus protocol is implemented by
n processes that communicate through shared objects. The processes each start
with an input of either 1 or 0 and must decide a common value. A consensus
protocol must ensure that

1. Consistency: all processes must decide on the same value.

2. Wait-freedom: each process must decide after a finite number of steps.

3. Validity: the common decided value was proposed by some process.

Herlihy [14] defines the consensus number of an object O as the largest n
for which there is a consensus protocol for n processes that only uses finitely
many instances of O and any number of atomic registers. It follows from the
definition that no combination of objects with a consensus number of k < n can
implement an object with a consensus number of n.

We can represent the executions of a n-consensus protocol as a tree in which
one process moves at a time. By validity and wait-freedom, the initial state of
the protocol must be bivalent (i.e., it is possible that 0 or 1 are decided), and
there must exist a state from which on all successor states are univalent. Hence,
the process that moves first in such a state decides the outcome of the protocol.
Such a state is called a critical state.

In order to show that an object has a consensus number strictly lower than
k, we derive a contradiction by assuming that there is a valid implementation of
a k-consensus protocol. Next, we maneuver the protocol into a critical state and
show that the processes will not be able to determine which process moved first.
Therefore, for some process P , there exist two indistinguishable executions in
which P decides differently. However, if the object has a consensus number of
k, the processes will be able to tell who moved first.

Synergetic knowledge is able to describe the situation from the critical state
onwards. We interpret an element {p1, ..., pk} of a synergy pattern G as the
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processes p1 up to pk having access to objects with a consensus number of k.
For each process pi, we define a propositional variable movei that is true if pi
moved first at the critical state. Furthermore, we define

ϕi := movei ∧
∧

1≤j≤n and j 6=i

¬movej ,

i.e., if ϕi is true, then the i-th process moved first. Let C = (C, L) be a model,
if C σ [G]ϕ1 ∨ [G]ϕ2 ∨ · · · ∨ [G]ϕn holds in the model, then it is always possible
for the processes in G to tell who moved first. Lastly, if G has n agents, we have
for any G′ with less than n agents

C 6σ [G′]ϕ1 ∨ [G′]ϕ2 ∨ · · · ∨ [G′]ϕn,

which means that the access to objects with a consensus number of n is required.
For three agents a, b and c, the model C = (C, L) is given by

C =













abc0
ab0
bc0
ac0

a0, b0, c0







,







abc1
ab0
bc0
ac0

a0, b0, c0







,







abc2
ab0
bc0
ac0

a0, b0, c0













with a valuation L representing that someone moved first, i.e.,

C, 〈abc0〉 σ ϕa C, 〈abc1〉 σ ϕb C, 〈abc2〉 σ ϕc.

It is easy to check that 〈abc0〉 ∼ab,ac,bc 〈abc1〉 and hence, having access to an ob-
ject with consensus number 2 is not enough in order to distinguish those worlds.
However,

C σ [abc]ϕa ∨ [abc]ϕb ∨ [abc]ϕc

is true and shows that access to objects with consensus number 3 suffices.

Example 2 (Dining cryptographers). The dining cryptographers problem, pro-
posed by Chaum [4], illustrates how a shared-coin primitive can be used by three
cryptographers (i.e., agents) to find out whether their employer or one of their
peers paid for the dinner. However, if their employer did not pay, the payer
wishes to remain anonymous.

For the sake of space, we do not give a full formalisation of the dining cryp-
tographers problem. Instead, we solely focus on the ability of agreeing on a coin-
flip and the resulting knowledge. In what follows, we will provide a model in
which the agents a, b and c can determine whether or not their employer paid if
and only if they have pairwise access to a shared coin.

Let the propositional variable p denote that their employer paid. We interpret
an agent pattern G = {{a, b}} as a and b, having access to a shared coin. Our
model C = (C, L), depicted in Figure 2, is given by the complex
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b0
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ac0
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Figure 2: Dining cryptographers model.

C =













abc0
ab0
bc0
ac0

a0, b0, c0







,







abc1
ab1
bc0
ac0

a0, b0, c0







,







abc2
ab0
bc1
ac0

a0, b0, c0







,







abc3
ab0
bc0
ac1

a0, b0, c0







,







abc4
ab1
bc1
ac0

a0, b0, c0







,







abc5
ab1
bc0
ac1

a0, b0, c0







,







abc6
ab0
bc1
ac1

a0, b0, c0







,







abc7
ab1
bc1
ac1

a0, b0, c0













and the valuation L is chosen such that

p ∈ L(〈abc0〉), p 6∈ L(〈abc1〉), p 6∈ L(〈abc2〉), p 6∈ L(〈abc3〉),

p ∈ L(〈abc4〉), p ∈ L(〈abc5〉), p ∈ L(〈abc6〉), p 6∈ L(〈abc7〉).

Consider the agent pattern G = {{a, b}, {a, c}, {b, c}}, then

C σ [G]p ∨ [G]¬p, (10)

i.e., in any world, if all agents have pairwise access to shared coins, they can
know the value of p. Furthermore, for each H ( G and each S ∈ C

C, S 6σ [H ]p ∨ [H ]¬p. (11)

Notice that (11) states that there is no world, where an agent pattern H can
know whether p or ¬p, and hence, it is stronger than C 6σ [H ]p ∨ [H ]¬p.
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5. Completeness of Syn

In order to show completeness of Syn with respect to simplicial models, we
take a detour via Kripke-models and focus on Syn without the axiom (P), which
is hereafter denoted by Syn-. We start by introducing κ-models which represent
common multi-agent models in which (D) is not necessarily satisfied. Thus, we
can employ the standard techniques to show that Syn- is sound and complete
with respect to κ-models. Next, we present δ-models, which are κ-models that
satisfy (D). The proof that Syn- is complete with respect to δ-models is more
challenging and requires the so-called unravelling method. Once we showed
soundness and completeness of Syn- with respect to those models, we show that
Syn is sound and complete with respect to their proper2 versions. Lastly, we
proceed with proving completeness with respect to simplicial models by relating
them to proper δ-models.

5.1. κ-models

In this section, we introduce κ-models and show that Syn- is sound and
complete with respect to κ-models. Definition 6 introduces pre-models, which
are our most simple models. All subsequent models are pre-models.

Definition 6 (Pre-model). A pre-model M = (W,∼, V ) is a tuple where

1. W is a set of possible worlds;

2. ∼ is a function that assigns to each agent pattern G a symmetric and
transitive relation ∼G on W ;

3. V :W → Pow(Prop) is a valuation.

Remark 3 (Notation). In order to avoid confusion due to the overloading of
∼G, we use lower-case letters for worlds of a pre-model, i.e., w ∼G v, and
capital letters for simplices, i.e., S ∼G T .

Definition 7 (Truth). LetM = (W,∼, V ) be a pre-model, w ∈ W , and φ ∈ L.
We defineM, w  φ inductively by

M, w  p iff p ∈ V (w)

M, w  ¬φ iff M, w 6 φ

M, w  φ ∧ ψ iff M, w  φ andM, w  ψ

M, w  [G]φ iff w ∼G v implies M, v  φ for all v ∈ W.

We writeM  φ, ifM, w  φ for all w ∈ W .

Definition 8. Let M = (W,∼, V ) be a pre-model, we define

Alive(G)M = {w | w ∼G w}.

2Properness will be defined later.
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If the pre-model is clear from the context, we omit the subscript M and
write Alive(G) instead of Alive(G)M.

Lemma 9. LetM = (W,∼, V ) be a pre-model. It holds that

M, w  alive(G) iff w ∈ Alive(G)M.

Proof. We first show that

M, w  alive(G) implies w ∈ Alive(G)M.

Assume M, w  alive(G), i.e., M, w 6 [G]⊥. By the definition of truth, there
must exist v ∈ W with w ∼G v andM, v  ⊤. By symmetry, we have v ∼G w
and by transitivity we have w ∼G w. Hence, w ∈ Alive(G)M. We now show that

w ∈ Alive(G)M implies M, w  alive(G).

Assume w ∈ Alive(G)M. By definition of Alive(G)M, we have that w ∼G w.
Therefore,M, w 6 [G]⊥ by the definition of truth.

Definition 9 (κ-model). Let M = (W,∼, V ) be a pre-model. M is called a
κ-model if and only if, for all agent patterns G and H:

K1: Alive(G)M ∩ Alive(H)M ⊆ Alive(G ∪H)M;

K2: Alive(G)M ⊆ Alive({A ∪B})M for A,B ∈ G;

K3: ∼H⊆∼G, if G ⊆ H;

K4: ∼G⊆∼G∪{B} if there exists A ∈ G with B ⊆ A;

NE: for all w ∈ W , there exists an agent pattern G such that w ∼G w.

A formula φ is κ-valid, denoted by κ φ, ifM  φ for all κ-modelsM.

Lemma 10. LetM = (W,∼, V ) be a κ-model. Furthermore, let G be an agent
pattern such that there exists A ∈ G with B ⊆ A. It holds that ∼G⊆∼{B}.

Proof. By K3 and K4 we have ∼G⊆∼G∪{B}⊆∼{B}.

Remark 4. LetM = (W,∼, V ) be a κ-model and let G be an agent pattern as
in Lemma 10. By K3, we have ∼G=∼G∪{B}.

The property K1 ensures that for each world, there exists a maximal alive
agent pattern and K2 forces alive(G) to be downwards closed. K3 guarantees
that an agent pattern G cannot know more than its supersets, and K4 states
that adding subpatterns to G does not strengthen its knowledge. Moreover, NE
ensures that there are no empty-worlds, i.e., worlds in which no agent is alive.
However as shown below in Example 3, κ-models do not necessarily satisfy (D),
i.e.,

⋂

B∈G

∼{B} = ∼G .
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w1 w2

a

b

Figure 3: The κ-model used in Example 3 does not satisfy standard group knowledge. Re-
flexive arrows are implicit.

Example 3. Let Ag = {a, b} and consider the κ-model M shown in Figure 3,
where reflexive arrows are implicit. The agents a and b cannot distinguish be-
tween the worlds w1 and w2, i.e., (w1, w2) ∈∼{a} and (w1, w2) ∈∼{b}. However,
together they are able to tell the two worlds apart. That is, (w1, w2) 6∈∼G for
any agent pattern G that contains the set {{a}, {b}}. Hence,M does not satisfy
standard group knowledge.

Lastly, notice, that K3 and K4 affect the formula alive(G) as well. For
example, the following formula is κ-valid

alive(G)→ alive({B}) if there exists A ∈ G and B ⊆ A.

Indeed, let M = (W,∼, V ) be a κ-model and assume M, w  alive(G). By
definition, there exists v ∈ W with w ∼G v and M, v  ⊤. By symmetry and
transitivity of ∼G we obtain w ∼G w. By Lemma 10 we have that (w,w) ∈∼{B}

and thusM, w  alive({B}).

Theorem 2 (Soundness). Syn- is sound with respect to κ-models.

Proof. We only show (T), (NE), (Union), (Clo), (Mono), (Equiv) and ([G]-Nec).

1. (T): Consider a world w ∈ W and assume that M, w  alive(G) and
M, w  [G]φ. By Lemma 9 we have w ∈ Alive(G), i.e., w ∼G w. By the
definition of truth we haveM, w  φ.

2. (NE): Let w ∈ W be arbitrary. By NE, there exists an agent pattern G
such that w ∼G w. By Lemma 9,M, w  alive(G) and thus

M, w 

∨

G⊆Pow(Ag)\{∅}

alive(G).

3. (Union): Assume M, w  alive(G) and M, w  alive(H). By Lemma 9,
w ∈ Alive(G) ∩ Alive(H). By K1, w ∈ Alive(G ∪ H) and by Lemma 9
M, w  alive(G ∪H).

4. (Clo): AssumeM, w  alive(G) and let A,B ∈ G. By Lemma 9, we have
w ∈ Alive(G). By K2, w ∈ Alive({A ∪ B}) and by Lemma 9 we obtain
M, w  alive({A ∪B}).
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5. (Mono): Assume that G ⊆ H for arbitrary G,H . Let w ∈ W be arbitrary
such that M, w  [G]φ. By the definition of truth, w ∼G v implies
M, v  φ for all v ∈ W . By K3 we have that ∼H⊆∼G, i.e., w ∼H v
implies w ∼G v. Thus,M, v  φ whenever w ∼H v. Therefore, it follows
thatM, w  [H ]φ.

6. (Equiv): Assume that for an arbitrary G, there exists A ∈ G with B ⊆ A.
Further, let w ∈W be arbitrary such thatM, w  [G∪{B}]φ. Therefore,
for all v ∈ W , w ∼G∪{B} v implies M, v  φ by assumption. By K4 we
have that ∼G⊆∼G∪{B} and thus w ∼G v implies w ∼G∪{B} v. Hence,
M, v  φ whenever w ∼G v and thusM, w  [G]φ.

Lastly, we show (G-Nec). Let A ∈ L and assume κ A. We need to show that
[G]A is κ-valid. LetM = (W,∼, V ) be an arbitrary κ-model. By assumption,
M, w  A for all w ∈ W . Thus, for any v ∈ W with w ∼G v, it holds that
M, v  A. By the definition of truth, M, w  [G]A, and since w ∈ W was
arbitrary,M  [G]A. Moreover, due toM being arbitrary, [G]A is κ-valid.

In what follows, we set up the machinery to prove completeness of L with
respect to κ-models.

Definition 10. Let G be an agent pattern and let Γ ⊆ L, we define

Γ \ [G] := {φ | [G]φ ∈ Γ}.

Definition 11 (Consistent set). A set Γ ⊆ L is consistent if and only if Γ 6⊢ ⊥.
Γ is maximal consistent if none of its proper supersets is consistent.

Definition 12 (Canonical Model). The canonical model Mc = (W c,∼c, V c)
for L is defined as

1. W c := {Γ ⊆ L | Γ is a maximal consistent set} is the set of possible
worlds;

2. ∼c is a function that assigns to each agent pattern G a relation

∼c
G:= {(Γ,∆) ∈ W c ×W c | Γ \ [G] ⊆ ∆};

3. V c : Prop→ Pow(W c) is a function defined by

V c(p) := {Γ ∈W c | p ∈ Γ}.

Lemma 11. Let Mc = (W c,∼c, V c) be the canonical model, G be an agent
pattern, and Γ ∈W c, then

Γ ∈ Alive(G)Mc iff alive(G) ∈ Γ.
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Proof. We first show that

Γ ∈ Alive(G)Mc implies alive(G) ∈ Γ.

Assume Γ ∈ Alive(G)Mc . By Definition 8, Γ ∼c
G Γ. Towards a contradiction,

assume that alive(G) 6∈ Γ, i.e., [G]⊥ ∈ Γ by the maximal consistency of Γ. Since
Γ ∼c

G Γ, i.e., Γ \ [G] ⊆ Γ, this yields ⊥ ∈ Γ, which contradicts the consistency
of Γ. Thus alive(G) ∈ Γ. We now show that

alive(G) ∈ Γ implies Γ ∈ Alive(G)Mc .

Assume alive(G) ∈ Γ. We need to show Γ ∼c
G Γ. Let φ ∈ Γ \ [G], i.e., [G]φ ∈ Γ.

Since
alive(G)→ ([G]φ→ φ)

is an axiom of Syn- and by the maximal consistency of Γ, it follows that φ ∈ Γ,
i.e., Γ ∼c

G Γ. By Definition 8, we obtain Γ ∈ Alive(G)Mc .

Lemma 12. Mc is a κ-model.

Proof. We show thatMc satisfies all properties of κ-models.

1. Symmetry: Assume Γ \ [G] ⊆ ∆. We need to show ∆ \ [G] ⊆ Γ. Let
φ ∈ ∆ \ [G], i.e., [G]φ ∈ ∆, and assume towards a contradiction that
φ 6∈ Γ. Since Γ is a maximal consistent set and (B) is an axiom of Syn-, we
have ¬φ ∈ Γ as well as [G]¬[G]¬φ ∈ Γ by the maximal consistency of Γ.
Therefore, ¬[G]¬φ ∈ Γ\ [G] and thus ¬[G]¬φ ∈ ∆. This is a contradiction
because we assumed [G]φ ∈ ∆. Hence, we conclude φ ∈ Γ which shows
that ∆ \ [G] ⊆ Γ.

2. Transitivity: Assume Γ ∼c
G ∆ and ∆ ∼c

G Φ. We need to show Γ ∼c
G Φ.

By assumption, we have Γ\ [G] ⊆ ∆ and ∆\ [G] ⊆ Φ. Let φ ∈ Γ\ [G], i.e.,
[G]φ ∈ Γ. Since Γ is maximally consistent and because (4) is an axiom of
Syn-, we have [G][G]φ ∈ Γ, and thus [G]φ ∈ ∆. Further, since ∆ ∼c

G Φ,
we have φ ∈ Φ and hence Γ \ [G] ⊆ Φ.

3. K1: Assume Γ ∈ Alive(G) and Γ ∈ Alive(H). By Lemma 11 it follows that
alive(G) ∈ Γ and alive(H) ∈ Γ. Since Γ is a maximal consistent set and
(Union) is an axiom of Syn- it follows that alive(G∪H) ∈ Γ. By Lemma 11
we have Γ ∈ Alive(G ∪H).

4. K2: Assume A,B ∈ G and let Γ ∈ Alive(G). By Lemma 11 it follows that
alive(G) ∈ Γ. Since Γ is a maximal consistent set and (Clo) is an axiom
of Syn- it follows that alive({A ∪ B}) ∈ Γ by the maximal consistency of
Γ. By Lemma 11 we have Γ ∈ Alive({A ∪B}).

5. K3: Assume (Γ,∆) ∈∼c
H , we need to show that (Γ,∆) ∈∼c

G. Let φ ∈ Γ \ [G],
i.e., [G]φ ∈ Γ. Since Γ is maximally consistent and (Mono) is an axiom of
Syn- we have that [H ]φ ∈ Γ. Since we assumed Γ\[H ] ⊆ ∆ we have φ ∈ ∆.
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6. K4: Assume (Γ,∆) ∈∼c
G, we need to show that (Γ,∆) ∈∼c

G∪{B}. Let

φ ∈ Γ \ [G ∪ {B}], i.e., [G ∪ {B}]φ ∈ Γ. Since Γ is maximally consistent
and (Equiv) is an axiom of Syn- we have that [G]φ ∈ Γ. Since we assumed
Γ \ [G] ⊆ ∆ we have φ ∈ ∆.

7. NE: Let Γ ∈ W c be arbitrary. Since Γ is maximally consistent and (NE) is
an axiom of Syn-, there exists an agent pattern G such that alive(G) ∈ Γ.
By Lemma 11, Γ ∼c

G Γ.

The truth lemma is standard and completeness follows as usual.

Lemma 13 (Truth lemma). Let Mc = (W c,∼c, V c) be the canonical model.
For each world Γ ∈ W c and each formula φ ∈ L we have

Mc,Γ  φ iff φ ∈ Γ.

Theorem 3 (Completeness). Syn- is complete with respect to κ-models.

5.2. δ-models

As demonstrated in Example 3, the previously introduced κ-models do not
necessarily satisfy (D). In this section, we introduce δ-models which satisfy it.
Furthermore, we show that Syn- is sound and complete with respect to δ-models.

Definition 13 (δ-model). A pre-model M = (W,∼, V ) is called a δ-model if
and only if

K2: Alive(G)M ⊆ Alive({A ∪B})M for A,B ∈ G;

K3: ∼H⊆∼G, if G ⊆ H;

K4: ∼G⊆∼G∪{B} if there exists A ∈ G with B ⊆ A;

NE: for all w ∈ W , there exists an agent pattern G such that w ∼G w;

D: ∼G= ∩B∈G ∼{B}.

A formula φ is δ-valid, denoted by δ φ, ifM  φ for all δ-modelsM. More-
over, observe that D implies K1 and thus, δ-models are κ-models. This implies
that Syn- is sound with respect to δ-models. For a pre-model M = (W,∼, V ),
we call F = (W,∼) its frame and sometimes write M = (F, V ) instead. Fur-
thermore, we say that a frame is a κ-frame, or a δ-frame, in order to indicate
which properties the frame satisfies. In what follows, we will show that Syn- is
complete with respect to δ-models.

Definition 14 (History). Let F = (W,∼) be a frame. A history h is a non-
empty and finite sequence of triples (w,G, v) where

1. w ∼G v and G is maximal under set inclusion. That means, there does
not exist an agent pattern G′ with G ( G′ and w ∼G′ v;

2. if (w′, G′, v′) is the successor of (w,G, v), then v = w′.
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We write ℓ(h) to denote the last world of a history h. That is, if (w,G, v)
is the last element of h, then ℓ(h) = v. Furthermore, h ‖ (ℓ(h), G, v) denotes
the extension of h with (ℓ(h), G, v). The set of all histories over a frame F is
denoted by HF .

Lemma 14 (Downwards closure). Let F = (W,∼) be a κ-frame and consider a
history h ∈ HF and let (w,U, v) be an element of h. If there exists A ∈ U with
B ⊆ A, then B ∈ U .

Proof. Towards a contradiction, suppose that B 6∈ U . Consider the agent pat-
tern U ′ = U∪{B}. Clearly U ( U ′ and w ∼U ′ v because of K4. This contradicts
U being maximal under set inclusion and thus, B ∈ U .

Definition 15 (→G). Let F = (W,∼) be a frame and consider h, h′ ∈ HF . For
an agent pattern G, we define →G⊆ HF ×HF as follows

h→G h′ iff h′ = h ‖ (ℓ(h), U, ℓ(h′)) and G ⊆ U.

Lemma 15. Let F = (W,∼) be a κ-frame and consider h, h′ ∈ HF with
h→G h′ for some agent pattern G. The following hold:

1. if H ⊆ G, then h→H h′;

2. if there exists A ∈ G and B ⊆ A, then h→{B} h
′;

3. if h→H h′, then h→G∪H h′.

Proof. By assumption, h′ = h ‖ (w,U, v) with G ⊆ U . For the first case, we
have H ⊆ G ⊆ U and thus h →H h′ by Definition 15. For the second case,
we have {B} ⊆ U by Lemma 14 and thus h →{B} h

′ by Definition 15. Lastly,
assume h →G h′ and h →H h′, i.e., G ⊆ U and H ⊆ U . Hence G ∪H ⊆ U by
the properties of set union, and therefore h→G∪H h′ by Definition 15.

Definition 16 (U(F )). Let F = (W,∼) be a frame. We define the unravelled
frame U(F ) = (HF , {≈G}G⊆Pow(Ag)\{∅}) where ≈G is the transitive closure of

the symmetric closure of →G, i.e., ≈G= (→G ∪ →
−1
G )∗.

Definition 17 (U(M)). Let F = (W,∼) be a frame and consider the pre-model
M = (F, V ). We call U(M) = (U(F ), L) with

h ∈ L(p) iff ℓ(h) ∈ V (p)

the unravelled model ofM.

Definition 18. (R-path) Let R be a relation on a set X. A R-path from x1 to
xn is a sequence

τ = (x1, x2), (x2, x3), · · · , (xn−2, xn−1), (xn−1, xn)

with (xi, xi+1) ∈ R for 1 ≤ i ≤ n− 1.
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Definition 19. Let R be a relation on a set X. We define

R ◦R := {(x, y) ∈ X ×X | There exists z ∈ X with (x, z) ∈ R and (z, y) ∈ R}.

We abbreviate

n−1 times
︷ ︸︸ ︷

(· · · (R ◦R) ◦R · · · ) ◦R) to Rn.

Remark 5. Let R be relation on a set X, then there is a R-path of length n
from a to b if and only if (a, b) ∈ Rn.

Corollary 4. Let F be a κ-frame. The following two are equivalent

1. (h, h′) ∈≈G;

2. there exists a (→G ∪ →
−1
G )-path τ from h to h′.

For brevity we refer to (→G ∪ →
−1
G )-paths as →G-paths.

Remark 6. If F = (W,∼) is a frame, then a →G-path from h to h′ implies
the existence of a ∼G-path from ℓ(h) to ℓ(h′). It follows by transitivity that
ℓ(h) ∼G ℓ(h′).

Theorem 4. Let F = (W,∼) be a κ-frame. Then U(F ) is a κ-frame.

Proof. Observe that ≈G= (→G ∪ →
−1
G )∗ is transitive and symmetric, because

the transitive closure of a symmetric relation is transitive and symmetric. More-
over, NE follows because histories are not empty.

• K1: Assume (h, h) ∈≈G and (h, h) ∈≈H . By Remark 6, ℓ(h) ∼G ℓ(h) as
well as ℓ(h) ∼H ℓ(h). Since F satisfies K1, it holds that ℓ(h) ∼G∪H ℓ(h).
Hence, h∗ = h ‖ (ℓ(h), U, ℓ(h)) with G ∪ H ⊆ U is a valid history and
(h, h∗) ∈≈G∪H . We obtain (h, h) ∈≈G∪H by symmetry and transitivity.

• K2: Assume (h, h) ∈≈G and let A,B ∈ G. By assumption and Remark 6,
ℓ(h) ∼G ℓ(h). Because F satisfies K2, we have ℓ(h) ∼{A∪B} ℓ(h). Thus
h∗ = h ‖ (ℓ(h), U, ℓ(h)) with {A∪B} ⊆ U is a valid history which implies
that (h, h) ∈≈{A∪B} by symmetry and transitivity.

• K3: Assume (h, h′) ∈≈H and G ⊆ H . By Corollary 4, there must exist
a →H -path τ from h to h′. Let (s, s′) ∈ τ be arbitrary. Since F satisfies
K3, Lemma 15 implies that s ≈G s′. Therefore, τ is a →G-path and
(h, h′) ∈≈G by Corollary 4.

• K4: Assume (h, h′) ∈≈G and that there exists A ∈ G with B ⊆ A. By
Corollary 4 there exists a →G-path τ from h to h′. Let (s, s′) ∈ τ be
arbitrary. Since F satisfies K4, Lemma 15 implies that s ≈G∪{B} s′.
Therefore, τ is a →G∪{B}-path and (h, h′) ∈≈G∪{B} by Corollary 4.

We call a R-path from x1 to xn non-redundant if and only if xi 6= xi+2 for
1 ≤ i < n− 1. Further, we often write

τ = x1Rx2Rx3 · · ·xn−1Rxn
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instead of τ = (x1, x2), (x2, x3), · · · , (xn−2, xn−1), (xn−1, xn). If R = S ∪ S−1,
we will use S and S−1 in a path instead of R. We say that a →G-path has
a change of direction, if (xi, xi+1) ∈→G (respectively (xi, xi+1) ∈→

−1
G ) and

(xi+1, xi+2) ∈→
−1
G (respectively (xi+1, xi+2) ∈→G). In what follows, we will

write h←G h′ instead of h→−1
G h′ for better readability.

Lemma 16. Let F = (W,∼) be a κ-frame and consider the unravelled frame
U(F ). If (h1, hn) ∈≈G, then h1 and hn have a common prefix.

Proof. If one history is a prefix of the other, the claim follows trivially. Hence,
we assume that neither of them is a prefix of the other. Corollary 4 ensures
that there exists a →G-path τ = (h1, h2), · · · , (hn−1, hn), which we can assume
to be non-redundant. Moreover, due to our first assumption, τ must have at
least one change of direction. In order to show that a common prefix of h1 and
hn exists, we show that τ has exactly one change of direction, and that change
is of the form hi−1 ← hi → hi+1 with i > 1.

Let hi be the history at which the first change of direction occurs. Notice,
that this implies that i > 1. First, we observe that this change of direction
cannot be of the form hi−1 → hi ← hi+1, because this would imply hi−1 = hi+1

and contradict τ being non-redundant. Therefore, the first change of direction
must be of the form hi−1 ← hi → hi+1. A subsequent change of direction would
be of the form hi+k−1 →G hi+k ←G hi+k+1 for k ≥ 1 which contradicts that τ
is non-redundant. Therefore, hi is a common prefix.

Lemma 17. Let F = (W,∼) be a κ-frame and consider the unravelled frame
U(F ). For any two agent patterns G and H, the following holds

(h, h′) ∈≈G and (h, h′) ∈≈H implies (h, h′) ∈≈G∪H .

Proof. Assume h ≈G h′ and h ≈H h′. By Lemma 16 the following paths exist

• h′′G →G · · · →G h,

• h′′G →G · · · →G h′,

• h′′H →H · · · →H h, and

• h′′H →H · · · →H h′.

Observe that either h′′G = h′′H or one of the histories is a proper prefix of the
other. If h′′G 6= h′′H , let h′′ be the longer history. If they are of the same length,
fix either h′′ = h′′G or h′′ = h′′H . We can write h and h′ as

h = h′′ ‖ (w1, G1, w2) ‖ · · · ‖ (wn−1, Gn, wn), and

h′ = h′′ ‖ (w′
1, G

′
1, w

′
2) ‖ · · · ‖ (w

′
m−1G

′
m, w

′
m).

By Definition 16 we have G ⊆ Gi, G
′
j and H ⊆ Gi, G

′
j for all i, j ≥ 0. Thus, by

Lemma 15 and Corollary 4, we have h ≈G∪H h′.

Lemma 18. Let F = (W,∼) be a κ-frame. U(F ) satisfies D.
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Proof. ≈G⊆
⋂

B∈G ≈{B} follows directly by K3. For the other direction, let
G = {A1, ..., An} be an agent pattern and consider the sets

B1 = {A1} and Bi = {Ai} ∪Bi−1 for 2 ≤ i ≤ n.

If (u, v) ∈
⋂

B∈G ≈{B}, then (u, v) ∈≈Ai
for 1 ≤ i ≤ n. Applying Lemma 17

inductively yields (u, v) ∈≈Bi
, for 1 ≤ i ≤ n. Since Bn = G, we obtain

(u, v) ∈≈G.

Corollary 5. If F is a κ-frame, then U(F ) is a δ-frame.

Definition 20 (Functional bisimulation). Let M = (WM,∼M, VM), and
N = (WN ,∼

N , VN ) be two pre-models. f : WM → WN is a functional bisimu-
lation if and only if

1. Atom: for all w ∈WM, VM(w) = VN (f(w)).

2. Forth: for any agent pattern G, w ∼M
G v implies f(w) ∼N

G f(v).

3. Back: for any agent pattern G, f(w) ∼N
G v′ implies that there exists w′

with f(w′) = v′ such that w ∼M
G w′.

Lemma 19. If f : WM → WN is a functional bisimulation, then for any
formula ϕ we haveM, w  ϕ if and only if N , f(w)  ϕ.

Proof. Let f be a functional bisimulation. We show the claim by induction on
the length of ϕ.

1. If ϕ ∈ Prop, then the claim follows by Atom.

2. ϕ = ¬φ follows by the induction hypothesis.

3. ϕ = φ ∧ ψ follows by the induction hypothesis.

4. We will show equivalently that

M, w 6 [G]φ iff N , f(w) 6 [G]φ.

From left to right, assume M, w 6 [G]φ. Hence, there exists v ∈ WM

with w ∼M
G v andM, v 6 φ. By Forth we have that f(w) ∼N

G f(v) and
by the induction hypothesis we have N , f(v) 6 φ. Therefore, it holds that
N , f(w) 6 [G]φ. For the other direction, assume N , f(w) 6 [G]φ. Hence,
there exists v′ ∈ WN with f(w) ∼N

G v′ and N , v′ 6 φ. By Back there
exists w′ ∈ WM such that f(w′) = v′ and w ∼M

G w′. By the induction
hypothesis we obtainM, w′ 6 φ and thusM, w 6 [G]φ.

Let F = (W,∼) be a κ-frame and consider a κ-modelM = (W,∼, V ) as well
as its unravelled model U(M) = (U(F ), L). It is straightforward to show that
the mapping last : HF →W that maps each h ∈ HF to ℓ(h) ∈W is a functional
bisimulation. We only show the claim for Back. Assume that w ∈ HF and
v′ ∈ W such that ℓ(w) ∼G v′. It follows that, w′ = w ‖ (ℓ(w), U, v′) with G ⊆ U
is a valid history with w′ ≈G w and ℓ(w′) = v′. Finally, the completeness of
Syn- with respect δ-models is an immediate consequence.

Theorem 5. Syn- is sound and complete with respect to δ-models.
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5.3. Completeness of Syn

In this section, we will show that Syn is sound and complete with respect to
proper δ-models.

Definition 21. LetM = (W,∼, V ) be a pre-model. For w ∈W , we define

w := {B | ∃G.B ∈ G and w ∈ Alive(G)M}.

Definition 22 (≡). LetM = (W,∼, V ) be a pre-model. We define the relation
≡ on W ×W as

w ≡ v iff w = v and w ∼w v.

Definition 23 (Proper). Let M = (W,∼, V ) be a pre-model. We say that M
is proper if and only if w ≡ v implies w = v.

If G is an agent pattern, we denote the set of maximal elements of G with
max(G). Notice that max(w) always contains exactly one element.

Remark 7. Let M = (W,∼, V ) be a κ-model. The following can be shown by
using the properties of κ-models and the fact that w is maximal under subsets:

1. M, w  alive(w) and M, w  dead(wC) are always the case;

2. M, w  alive(G) ∧ dead(GC) if and only if max(G) = max(w);

3. if max(G) = max(w), then w ∼G v andM, v  dead(GC) imply w = v.

Definition 24. Let M = (W,∼, V ) be a pre-model. We define the model
Mρ = (W ρ,∼ρ, V ρ) as

1. W ρ =W/ ≡ is the set of equivalence classes of ≡;

2. [w] ∼ρ
G [v] if and only if w ∼G v;

3. for any p ∈ Prop, [w] ∈ V ρ(p) if and only if w ∈ V (p).

Mρ is well-defined, if, for any two worlds w, v ∈W and p ∈ Prop,

w ≡ v implies w ∈ V (p) ⇐⇒ v ∈ V (p).

Lemma 20. Let M = (W,∼, V ) be a pre-model such that Mρ is well-defined.
We find that:

1. Mρ is proper;

2. M, w  φ if and only if Mρ, [w]  φ.

Proof. In order to show thatMρ is proper, observe that [w] ≡ [v] implies w ≡ v.
Indeed, since [w] ∼ρ

G [v] if and only if w ∼G v, it holds that [w] = w and w ∼w v.
Hence, w and v belong to the same equivalence class, i.e., [w] = [v].

For the second claim, we show the direction from right to left by induction on
the length of φ. The other direction is symmetric. The base case follows because
Mρ is well defined. The only case left is φ = [G]ψ. Assume Mρ, [w]  [G]ψ. We
need to showM, w  [G]ψ. Let v ∈W be such that w ∼G v, i.e., [w] ∼ρ

G [v]. By
the definition of truthMρ, [v]  ψ and by the induction hypothesisM, v  ψ,
which concludes the proof.
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Proving soundness and completeness of Syn with respect to proper κ-models
simply requires us to show that proper κ-models satisfy (P) and that the canon-
ical model is proper.

Lemma 21 (Soundness). Syn is sound with respect to proper κ-models.

Proof. We showed the cases for Syn- in the proof of Theorem 2. Hence, we
only need to show the case for (P). LetM = (W,∼, V ) be an arbitrary proper
κ-model. AssumeM, w  alive(G) ∧ dead(GC) ∧ φ. By Remark 7, we find that
max(G) = max(w). This implies that for any v ∈ W with w ∼G v such that
M, v  dead(GC), we have w = v, i.e., w ≡ v and by the properness of M, it
follows that w = v. ThereforeM, v  φ.

Theorem 6. The canonical modelMc for Syn is a proper κ-model.

Proof. We showed the cases for Syn- in the proof of Theorem 3. Hence, it suffices
to show thatMc is proper. Let Γ,∆ ∈ W c such that Γ ≡ ∆, i.e., Γ = ∆ = G
and Γ ∼c

G ∆. We now show Γ = ∆, i.e., for any φ ∈ L, φ ∈ Γ if and only
if φ ∈ ∆. We show the direction from left to right. The other direction is
symmetric. Assume φ ∈ Γ. Since Γ is a maximal consistent set, it follows by
Remark 7 and Lemma 11 that alive(G)∧dead(GC)∧φ ∈ Γ. Furthermore, by (P),
we have [G](dead(GC)→ φ) ∈ Γ and thus dead(GC)→ φ ∈ ∆. By assumption,
dead(GC) ∈ ∆ and thus φ ∈ ∆, because ∆ is a maximal consistent set.

Corollary 6. Syn is sound and complete with respect to proper κ-models.

Lemma 22 below shows that the construction of Definition 24 can be applied
to the unravelled canonical model.

Lemma 22. LetMc be the canonical model for Syn, and let U(Mc) = (H,L)
be the unravelled canonical model. For any h, h′ ∈ H with h ≡ h′ and p ∈ Prop

it holds that
h ∈ L(p) iff h′ ∈ L(p).

Proof. Let Mc = (W c,∼c, V c) be the canonical model for Syn. Furthermore,
consider two histories h, h′ of U(Mc) with h ≡ h′, i.e., h = h′ = G and h ≈G h′.
Let Γ = ℓ(h) and ∆ = ℓ(h′). By Remark 6, ℓ(h) ∼G ℓ(h′), i.e., Γ ∼c

G ∆. We
now show the direction from left to right. The other direction is symmetric. Let
p ∈ Prop with h ∈ L(p), i.e., Γ ∈ V c(p). Since Γ is a maximal consistent set it
follows by Remark 7 and Lemma 11 that alive(G) ∧ dead(Gc) ∧ p ∈ Γ. By (P),
[G](dead(GC)→ p) ∈ Γ. Therefore, dead(GC)→ p ∈ ∆. Lastly, by assumption
and Remark 7, we have dead(GC) ∈ ∆ and since ∆ is a maximal consistent set,
it follows that p ∈ ∆, i.e., ℓ(h′) ∈ V c(p).

Corollary 7. LetMc be the canonical model for Syn. It holds that U(Mc)ρ is
proper and

U(Mc)ρ, [h]  φ iff U(M), h  φ.

Corollary 8. Syn is sound and complete with respect to proper δ-models.
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5.4. δ-translations

In this section, we show how any proper δ-model can be transformed to
an equivalent simplicial model. Completeness of Syn with respect to simplicial
models follows immediately.

Definition 25 (δ-translation). Let M = (W,∼, V ) be a δ-model and consider
a simplicial model C = (C, L). C is δ-translation ofM if and only if there exists
a mapping T :W → C such that for all w, v ∈W

1. G ⊆ (T (w) ∩ T (v))◦ iff w ∼G v;

2. T (w) ∈ L(p) iff w ∈ V (p).

Construction 1 δ-translation
1: Input
2: A proper δ-frame F = (W,∼)

3: Initialisation
4: w∗

i := max{A ⊆ Ag | wi ∼{A} wi}
5: Si := {(A, i) | A ⊆ w∗

i } for 1 ≤ i ≤ n

6: Transformation

7: i = 1
8: j = 1
9: while wi exists do
10: j ← i+ 1
11: while wj exists do
12: for each G ⊆ Pow(Ag) \ {∅} with wi ∼G wj do

13: for each B ∈ G do

14: k ← {l | wl ∼{B} wi}
15: Sj ← Sj \ {(B, j)}
16: Sj ← Sj ∪ {(B, k)}
17: j ← j + 1
18: i← i+ 1

19:Output

20: C = {Si | wi ∈W }

Let M = (W,∼, V ) be a proper δ-model and F = (W,∼) be its δ-frame.
We assume an arbitrary enumeration of worlds and write wi for the i-th world.
In what follows, we denote the simplicial image of wi under a mapping T ,
i.e., T (wi), with Si. The next lemmas show that there exists a simplicial model C
that is a δ-translation ofM. Let w∗

i ⊆ Ag be the maximum set of all agents alive
in wi. Construction 1 on input F first initialises a simplex Si = {(A, i) | A ⊆ w∗

i }
for each world wi (lines 3 to 5). At this point, no two different simplices Si

and Sj are connected. Throughout the transformation phase (lines 6 to 16),
Construction 1 glues related simplices together according to the relation ∼ of

26



F . It does so by iterating through all pairs (wi, wj) with i < j, which suffices
by symmetry of ∼G, and checking for all G, if (wi, wj) ∈∼G. If so, for each
B ∈ G, (B, j) is replaced with (B, k) ∈ Si, where k is the smallest index such
that wk ∼{B} wi. After the replacement, the simplicies Si and Sj are connected.
Example 4 shows a simple execution.

Remark 8. Construction 1 could formally be given by a corecursion. However,
we think that the presentation as an algorithm makes it easier to understand.

We claim that the model C = (C, L), where C is the complex returned by
Construction 1 (line 20), and L is a valuation such that Si ∈ L(p) if and only if
wi ∈ V (p), is a δ-translation ofM.

Example 4. Let Ag = {a, b} and consider the proper δ-model M = (W,∼, V )
depicted in Figure 4. Construction 1 first initialises

S1 =

{
ab1
a1, b1

}

, S2 =

{
ab2
a2, b2

}

, and S3 =

{
ab3
a3, b3

}

.

During the transformation phase, when i = 1 and j = 2, Construction 1 replaces
(a, 2) and (b, 2) with (a, 1) and (b, 1) due to w1 ∼{a} w2 and w1 ∼{b} w2.
Moreover, it replaces (b, 3) ∈ S3 with (b, 1). Observe that if Line 14 was missing,
i.e., k = i, then, for i = 2 and j = 3, the Construction would add (b, 2) to S3

as well, which would make it an ill-formed simplex. The resulting complex is

C =

{{
ab1
a1, b1

}

,

{
ab2
a1, b1

}

,

{
ab3
a3, b1

}}

.

w1 w2 w3

ab, a, b ab, a, b ab, a, b

a
b b

b

Figure 4: The δ-model for Example 4. Only arrows for maximal agent patterns are shown.

The next Lemma ensures that we can safely assume the existence of an
unique and non-empty Si for each wi throughout our proofs.

Lemma 23 (Uniqueness). Let F = (W,∼) be a proper δ-frame. After the
initialisation of Construction 1 on input F and after each execution of Line 16,
the following holds for all wi, wj ∈W :

1. Si 6= ∅;

2. Si = Sj if and only if i = j.
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Proof. Si 6= ∅ follows immediately because δ-frames satisfy NE and thus, each
Si is initialised to some non-empty set. Furthermore, since each element that
is removed gets replaced, we conclude that Si 6= ∅ for all wi ∈ W after Line 16.
For the second claim, the direction from right to left follows immediately. For
the other direction, observe that if Si = Sj , then wi = wj and wi ∼wi

wj , i.e.,
wi ≡ wj . By the properness of F , it follows that wi = wj , i.e., i = j.

Since the smaller index gets precedence, some elements of a simplex may
never be replaced. For example, the simplex S1 remains unchanged throughout
Construction 1. Lemma 24 shows that those simplices are correct.

Lemma 24. Let F = (W,∼) be a proper δ-frame and consider Construction 1
on input F . After the initialisation (lines 3 to 5), for all wj ∈ W , it holds that
(A, j) ∈ Sj iff wj ∼{A} wj.

Proof. From left to right, we have (A, j) ∈ Sj if and only if A ⊆ w∗
j . Since

wj ∼{w∗

j
} wj by definition, we obtain wj ∼{A} wj by Lemma 10. Regarding

the other direction, assume wj ∼{A} wj . By the definition of w∗
j it follows that

A ⊆ w∗
j which implies that (A, j) ∈ Sj after the initialisation phase.

Lemma 25. Let F = (W,∼) be a proper δ-frame and consider i, j, k ∈ N such
that i 6= j, i 6= k, and j 6= k. There does not exist B ⊆ Ag such that, while
running Construction 1 on input F , (B, i) is replaced with (B, j) and (B, j) is
replaced with the pair (B, k).

Proof. Towards a contradiction, assume that there exists such a B ⊆ Ag, i.e.,
for some Si, (B, i) is replaced with (B, j) and (B, j) is replaced with (B, k).
By assumption, i < j < k because Construction 1 replaces (B, l) with (B,m)
only if l > m. Since lines 15 and 16 are executed at least twice, there exist
G,G′ ⊆ Pow(Ag) \ {∅} such that B ∈ G and B ∈ G′ with wi ∼G wj and
wj ∼G′ wk. Since {B} ⊆ G and {B} ⊆ G′, we have by K3 that wi ∼{B} wj

and wj ∼{B} wk. Further, wi ∼{B} wk follows by transitivity of ∼{B}. But this
means, that i = k because (B, k) was replaced by (B, i) prior which contradicts
that i < k.

Lemma 26. Let F = (W,∼) be a proper δ-frame. The output C of Construc-
tion 1 on input F satisfies the following two properties

T1: Let S ∈ C. If (A, j) ∈ S and (A, k) ∈ S, then j = k.

T2: Let wi, wj ∈W and G ⊆ Pow(Ag) \ {∅}, then

∀B ∈ G.∃k ∈ N.(B, k) ∈ Si ∧ (B, k) ∈ Sj iff wi ∼G wj .

Proof. T1 follows by construction. Regarding T2, we start by showing the
direction from left to right. Assume

∀B ∈ G.∃k ∈ N.(B, k) ∈ Si ∧ (B, k) ∈ Sj .
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Without loss of generality, we fix i ≤ j. We have that (B, k) ∈ Si ∩ Sj only if
there exists G′ with wi ∼G′ wj and B ∈ G′. By K3 we get wi ∼{B} wj . Since
B is arbitrary, D implies that wi ∼G wj .

For the other direction, let wi ∼G wj and let B ∈ G. By construction,
(B, j) ∈ Sj is replaced by (B, k) with k ≤ i. Let k be the smallest index
such that wk ∼G wi, i.e., if k < i, then (B, i) ∈ Si was replaced with (B, k)
before. Lemma 24 ensures that (B, k) ∈ Sk. Hence, if k < i, (B, j) ∈ Sj and
(B, i) ∈ Si are both replaced by (B, k) in the same iteration. If k = i, only
(B, j) is replaced by (B, i), and (B, i) ∈ Si at the end of the Construction due
to the symmetry of ∼G and k being minimal. By Lemma 25 there cannot be
any further replacements and thus (B, k) ∈ Si and (B, k) ∈ Sj at the end of
Construction 1.

A consequence of T2 is that

Si ∼G Sj if and only if wi ∼G wj . (12)

Lemma 27. Let F = (W,∼) be a proper δ-frame. Let C be the complex returned
by Construction 1 on input F . For each wi ∈ W , Si ∈ C is a well formed
simplex.

Proof. We show that Si satisfies S1, S2, and S3.

1. Si satisfies S1. Let (A, j) ∈ Si and (B, k) ∈ Si be two distinct maximal
elements. First, we note that A 6= B due to T1. By T2, wi ∈ Alive({A})
and wi ∈ Alive({B}). By K3, wi ∈ Alive({A} ∪ {B}). Further, by K2,
wi ∈ Alive({A ∪ B}). Hence, (A ∪ B, l) ∈ Si for some l. But since
A ( A ∪B, this contradicts that (A, i) is the maximal element of Si.

2. Si satisfies S2. Let (B, j) ∈ Si and C ⊆ B, we need to show that there ex-
ists a unique k such that (C, k) ∈ Si. By Lemma 10 we have ∼{B}⊆∼{C}.
Since we assume that (B, j) ∈ Si, we get wi ∼{B} wi by T2. Due to
∼{B}⊆∼{C}, we have that wi ∼{C} wi. Thus, by T2, there exists k ∈ N
such that (C, k) ∈ Si. Condition T1 ensures that k is unique.

3. Si satisfies S3. Let max(Si) = (B, k) and suppose that (A, j) ∈ Si for some
A * B. We have wi ∼{A} wi and wi ∼{B} wi by T2. By K3, it follows that
wi ∈ Alive({A}∪{B}) and by K2 we have that wi ∈ Alive({A∪B}). Thus
(A ∪B, l) ∈ Si for some l which contradicts the maximality of (B, k).

Lemma 28. Let F = (W,∼) be a proper δ-frame and consider Construction 1
on input F . The output set C = {Si | wi ∈W} is a complex.

Proof. In order to show that C is a complex, we need to show that it satisfies
Condition C. Consider the simplices Sm, Sn ∈ C and assume that there exists
A ⊆ Ag and i with (A, i) ∈ Sm and (A, i) ∈ Sn. We need to show that for all
B ⊆ A and all j ∈ N it holds that

(B, j) ∈ Sm iff (B, j) ∈ Sn.
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Since Sm and Sn are arbitrary, it is enough to show only one direction. Assume
that (B, j) ∈ Sm. By T2, we have wm ∼{A} wn and by Lemma 10, it holds
that wm ∼{B} wn. Since (B, j) ∈ Sm, T2 implies wm ∼{B} wj . Further, by
symmetry and transitivity we obtain wj ∼{B} wn. Hence, it holds that j ≤ n.
Therefore, (B, j) replaced (B, n) in Sn. By Lemma 25, no more replacements of
that pair can happen during the execution of Construction 1 and we conclude
(B, j) ∈ Sn.

Theorem 7. For each proper δ-model, there exists a δ-translation.

Proof. LetM = (W,∼, V ) be a proper δ-model. Further, consider C = (C, L),
where C is the output of Construction 1 on input (W,∼) and L : C → Prop is
a valuation such that

Si ∈ L(p) iff wi ∈ V (p). (13)

By Lemma 28, C is a simplicial model. It follows from (12) and (13) that C is a
δ-translation ofM.

Theorem 8. Let M = (W,∼, V ) be a proper δ-model and let C = (C, L) be a
δ-translation of M. It holds that

M, wi  φ if and only if C, Si σ φ.

Proof. By induction on the length of formulas.

1. Let φ ≡ alive(G) for some G ⊆ Pow(Ag) \ {∅}. We haveM, wi  alive(G)
iff wi ∼G wi iff Si ∼G Si iff C, Si σ alive(G).

2. Let φ ∈ Prop. We haveM, wi  φ iff wi ∈ V (p) iff Si ∈ L(p) iff C, Si σ φ
(by the definition of L).

3. Let φ ≡ ¬ψ. Follows by the induction hypothesis.

4. Let φ ≡ ψ ∧ ϕ. Follows by the induction hypothesis.

5. Let φ ≡ [G]ψ. We equivalently show

M, wi 6 [G]ψ iff C, Si 6σ [G]ψ.

It holds that M, wi 6 [G]ψ iff there exists wj ∈ W with wi ∼G wj and
M, wj 6 ψ iff G ⊆ (Si ∩ Sj)

◦ (12) and C, Sj 6σ ψ (by hypothesis) iff
C, Si 6σ [G]ψ by definition.

Hence, if 6⊢ ϕ, then there exits a proper δ-modelM (Corollary 8) such that
M 6 ϕ. By Theorem 8, there must exist a simplicial model C such that C 6σ ϕ.
Thus, Syn is sound and complete with respect to simplicial models.

Corollary 9. σ ϕ if and only if ⊢ ϕ.
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6. Conclusion

This work presented the normal modal logic Syn, a logic in which we can
reason about what a group of agents knows beyond their pooled individual
knowledge. The new modality [G] allows us to express the knowledge of a group
while also accounting for relations between its members. Hence, the knowledge
of two seemingly equal groups may differ due to different relationships among
their agents. Moreover, we provided simplicial semantics for Syn based on semi-
simplicial sets and demonstrated its use by analysing consensus objects and the
dining cryptographers problem. To round off our work on synergistic knowledge,
we showed that Syn is sound and complete with respect to our simplicial models.

Semi-simplicial sets were initially studied in order to represent improper
Kripke models and to explore new types of group knowledge (cf. van Ditmarsch
et al. [5]). While synergistic knowledge definitely is a new form of distributed
knowledge, we still must require that Syn contains the axiom (P) because for
any simplex S, S◦ is a valid agent pattern. Thus, Syn- can describe improper
Kripke models. For example, the δ-model shown in Figure 5 is a valid model
for Syn-, but not for Syn. Applying Construction 1 would result in a complex
with only one world, which means that this complex cannot be a δ-translation
of the model shown in Figure 5. However, if we restrict agent patterns to sets,
we might be able to represent improper Kripke models. For example, when
treating agent patterns as sets, the complex depicted in Figure 1 corresponds
to an improper Kripke model.

w1 w2

ab, a, b ab, a, b

ab, a, b

Figure 5: An improper δ-model. Only the maximal agent patterns are shown.

7. Future Work

In this work, we presented a candidate for an indistinguishability relation.
However, there may be other reasonable options. For example, another possi-
ble notion of indistinguishability is one that takes the connectivity of an agent
pattern into account. It is an intuitive option for settings where adding an unre-
lated agent to a pattern must not result in new knowledge. For example, adding
an agent without any communication links to a network does not strengthen the
network’s reasoning power. In other words, an agent pattern is only as strong as
its weakest connected component. Unfortunately, the concept of indistinguisha-
bility so far cannot capture this. To see why this is the case, consider the model
depicted in Figure 6, where the pattern G = {a, b} cannot distinguish X and Y .
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But if we add the completely unrelated agent c to G, then, the updated pattern
can suddenly distinguish X and Y . Hence, we would like a definition in which
{a, b, c} cannot distinguish X from Y . Let G be the pattern {a, bc}. We could
interpret this as b and c communicate with each other but there is no communi-
cation between a and b or c. A formula [G]φ will thus be interpreted as a knows
φ and the group b, c has distributed knowledge of φ. Hence, {a, b, c} cannot
tell the difference between X and Y because a and b cannot do so individually.
Moreover, c does not have the means to tell a or b why it can distinguish the two
worlds. A further investigation of this kind of indistinguishability seems to be
promising for network topologies. We think that it is certainly fruitful to have
communication pattern logic (cf. Castañeda et al. [3]) in mind when studying
this notion of indistinguishability. A first analysis of this topic can be found in
the preliminary version of this work [2].

a

b

c c′X Y

Figure 6: A model in which two agents a and b can together distinguish between the worlds
X and Y . However, they cannot do so individually.

Additionally, we would like to explore the notion of synergy in distributed
computing. Especially for tasks which require agents to commit to certain roles.
For example, a smart contract that assigns buyers to sellers can be seen as a
synergistic primitive for two parties. Indeed, without a buyer, the seller cannot
sell and without the seller, the buyer cannot buy. Hence, this task needs two
roles: a seller and a buyer. The model depicted in Figure 7 on the left shows
how simplicial models can capture this. The buyer B offers an amount o and
the seller S sells for a price p. Individually, they do not know if a trade can
happen. That is, they do not know whether p ≤ o (i.e., deal) or p > o (i.e., no
deal). Only after querying the previously mentioned smart contract, they know
if an exchange can take place. Lastly, it is also reasonable to analyse this from
a dynamic standpoint in which querying the smart contract eliminates multiple
edges. Figure 7 shows an update for the model on the left, in the case that p ≤ o.
It would be interesting to formulate updates that eventually transform models
with parallel faces to the usual simplicial complexes. However, it is currently
not clear how such update rules could transfer to distributed computing.
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B

S

B

S

updatep ≤ o
deal

p > o
¬deal

p ≤ o
deal

Figure 7: Without accessing a buyer-seller smart contract, the buyer B and the seller S do
not know whether a trade can happen. We can represent the model after accessing the smart
contract by simply removing the parallel edge, i.e., global state, that is not the case.
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[10] Goubault, É., Kniazev, R., Ledent, J., Rajsbaum, S., 2023b. Simplicial
models for the epistemic logic of faulty agents. arXiv:2311.01351.
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