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Abstract. In formal epistemology, group knowledge is often modelled
as the knowledge that the group would have if the agents share all their
individual knowledge. However, this interpretation does not account for
relations between agents. In this work, we propose the notion of synergis-
tic knowledge, which makes it possible to model those relationships. As
examples, we investigate the use of consensus objects and the problem
of the dining cryptographers. Moreover, we show that our logic can also
be used to model certain aspects of information flow in networks.
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1 Introduction

A simplicial interpretation of the semantics of modal logic has gained recent
interest, due to the success of applying topological methods to problems occur-
ring in distributed systems. The topological approach to distributed computing,
exemplified by Herlihy, Kozlov and Rajsbaum [10], interprets the configurations
of a distributed system as a simplicial complex. The vertices of a simplicial com-
plex represent local states of different agents and an edge between two vertices
means that the two local states can occur together.

Modal logic has various applications to problems in distributed computing,
such as agreement (c.f. Halpern and Moses [8]). Models for modal logic are
usually based on a possible worlds approach where the operator � is evaluated
on Kripke frames. In a world w, a formula φ is known, denoted by �φ, if and
only if φ is true in each world indistinguishable from w. These frames can be
extended to multi-agent systems by introducing an indistinguishability relation
for each agent. A formula φ is distributed knowledge of a group, first introduced
by Halpern and Moses [8], if and only if φ is true in all worlds that cannot be
distinguished by any member of the group.

Given a set of agents, van Ditmarsch, Goubault, Ledent and Rajsbaum [2]
define a simplicial model for settings in which all agents are present at any point
in time. This semantics is shown to be equivalent to the modal logic S5n. In
the same setting, Goubault, Ledent and Rajsbaum [5] look at distributed task
computability through the lens of dynamic epistemic logic (c.f. van Ditmarsch,
van der Hoek and Kooi [3]). Using dynamic epistemic logic makes it possible
to model the relationship between input and output configurations of tasks,
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which is one of the core objectives of the classical topological approach to dis-
tributed systems (c.f. Herlihy and Shavit [11]). Work regarding models where
some agents might not be present in a configuration was conducted indepen-
dently by van Ditmarsch and Kuznets [4] and Goubault, Ledent and Rajsbaum
[6]. The latter work shows the equivalence between their simplicial models and
Kripke models for the logic KB4n, whereas van Ditmarsch and Kuznets [4] deal
with crashed agents by letting formulas be undefined and show that their logic
is sound. Randrianomentsoa, van Ditmarsch and Kuznets [12] show in a fol-
low up work that the route taken by van Ditmarsch and Kuznets [4] leads to a
sound and complete semantic for their axiom system. Both works remark that
impure complexes cannot capture the information of improper Kripke frames,
i.e. models in which some worlds cannot be distinguished from others by all
agents. They point out the need for extending the interpretation of simplicial
complexes to simplicial sets, i.e. simplicial complexes that may contain the same
simplex arbitrarily often. Furthermore, the latter work also shed light on a new
notion of group knowledge which differs from the usual definition of distributed
knowledge. Their example is depicted in Figure 1 in which the agents a and b
individually cannot distinguish the worlds X and Y since the vertices labelled
with a and b belong to both X and Y . However, a and b together can distinguish
between X and Y since the worlds do not share an edge between vertices a and
b. In a follow up work, Goubault, Kniazev, Ledent and Rajsbaum [7] provide,
among various results, a semantics for such simplicial sets and provide a higher
order interpretation of distributed knowledge for a set of agents.

a

b

c c′X Y

Fig. 1. A model in which two agents a and b can together distinguish between the
worlds X and Y . However, they cannot do so individually.

In this paper, we propose the notion of synergistic knowledge, which allows
a group of agents to know more than just the consequences of their pooled
knowledge. That is, our newly introduced epistemic operator [G] supports a
principle that could be paraphrased as the sum is greater than its parts, hence
the name synergistic knowledge. Different to the higher order interpretation of
distributed knowledge by Goubault, Kniazev, Ledent and Rajsbaum [7], which
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analyses the knowledge of a set of agents, we interpret G as a simplicial complex
over the set of agents. Hence, we refer toG as an agent pattern instead of a group.
The operator [G] allows us to model relations between subgroups of agents and
how they interact with each other. Hence, two agent patterns G and H may
contain the same agents, but differ in the relations among them. For example,
in Figure 1, we can distinguish the pattern {{a}, {b}}, which cannot distinguish
between X and Y because the two worlds share vertices labelled with a and with
b, from the pattern {{a, b}}, which can distinguish X and Y due to X and Y
not sharing an edge. As applications for synergistic knowledge, we investigate
the use of consensus objects (c.f. Herlihy [9]) and the problem of the dining
cryptographers (c.f. Chaum [1]).

Our main contribution consists in i) providing a novel simplicial set semantics
for modal logic that is simpler than previous approaches as it does not refer to
category theory or make use of chromatic maps, and ii) the introduction of a new
knowledge operator [G] that allows us to express distributed knowledge in a more
fine grained way, as well as iii) presenting a new notion of indistinguishability,
called componentwise indistinguishability, which models the flow of information
in networks. All points mentioned are accompanied by examples.

In Section 2, we introduce our new simplicial set model together with a
corresponding indistinguishability relation. Section 3 studies the logic induced
by our model. In Section 4, we present examples that illustrate the use of our
logic. In Section 5, we adapt our notion of indistinguishability and show how
it can be used in order to model the information flow in a network. Lastly, we
draw a conclusion of our work in Section 6.

2 Indistinguishability

In this section, we introduce the indistinguishability relation that is used to
model synergistic knowledge. Let Ag denote a set of finitely many agents and let

Agsi = {(A, i) | A ⊆ Ag and i ∈ N}.

We may think of a pair (A, i) ∈ Agsi as representing a set of agents A in local
state i. Further, let S ⊆ Agsi. An element (A, i) ∈ S is maximal in S if and only
if

∀(B, j) ∈ S.|A| ≥ |B|, where |X| denotes the cardinality of the set X.

Definition 1 (Simplex). Let ∅ 6= S ⊆ Agsi. S is a simplex if and only if

S1: The maximal element is unique, i.e.

if (A, i) ∈ S and (B, j) ∈ S are maximal in S then, A = B and i = j.

The maximal element of S is denoted as max(S).
S2: S is uniquely downwards closed, i.e. for all (B, i) ∈ S and ∅ 6= C ⊆ B

∃!j ∈ N.(C, j) ∈ S, where !∃j means that there exists exactly one j.
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S3: S contains nothing else, i.e.

(B, i) ∈ S and (A, j) = max(S) implies B ⊆ A.

Definition 2 (Complex). Let C be a set of simplexes. C is a complex if and
only if

C: For any S, T ∈ C, if there exist A and i with (A, i) ∈ S and (A, i) ∈ T , then

for all B ⊆ A and all j (B, j) ∈ S ⇐⇒ (B, j) ∈ T.

Condition C guarantees that the maximal element of a simplex uniquely
determines it within a given complex.

Lemma 1. Let C be a complex and S, T ∈ C. We find

max(S) = max(T ) implies S = T.

Proof. We show S ⊆ T . The other direction is symmetric. Let (A, i) = max(S).
Assume (B, j) ∈ S. Because of S3, we have B ⊆ A. By Condition C, we conclude
(B, j) ∈ T . ut

Whenever it is clear from the context, we abbreviate ({a1, ..., an}, i) as a1...ani
in order to enhance readability. Furthermore, we may use a row (or a mixed row-
column) notation to emphasize simplexes. For example,

ab0a0
b0

 ,

ab1a0
b1




is a complex that contains 2 simplexes. Whenever we refer to a simplex within a
complex, we write 〈Ai〉 for the simplex with maximal element (A, i). Condition C
guarantees that this notation is well-defined.

Oberserve that Condition C ensures that neither{{
ab0
a0, b0

}
,

{
ab0
a1, b1

}}
nor


 abc0
ab0, ac0, bc0
a0, b0, c0

 ,

{
ab0
a1, b1

}
is a complex, although each individual simplex is well-formed.

Definition 3 (Indistinguishability). Let S ⊆ Agsi, we define

S◦ = {A | ∃i ∈ N : (A, i) ∈ S}.

An agent pattern is a subset of Pow(Ag) \ {∅}. An agent pattern cannot dis-
tinguish between two simplexes S and T , denoted by S ∼G T , if and only if
G ⊆ (S ∩ T )◦.

Definition 4 (Partial equivalence relation (PER)). A relation R ⊆ S ×S
is a partial equivalence relation if and only if it is symmetric and transitive.
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Lemma 2 (PER). ∼G is a PER.

Proof. Symmetry immediately follows from the fact that set intersection is com-
mutative. To show transitivity, let S, T, U be simplexes with S ∼G T and
T ∼G U , i.e.

G ⊆ (S ∩ T )◦ (1)
G ⊆ (T ∩ U)◦ (2)

Let A ∈ G. Because of (1), there exists i with

(A, i) ∈ S and (A, i) ∈ T. (3)

Because of (2), there exists j with

(A, j) ∈ T and (A, j) ∈ U. (4)

From (3), (4), and Condition S2 we obtain i = j. Thus by (3) and (4), we get
A ∈ (S ∩ U)◦. Since A was arbitrary in G, we conclude G ⊆ (S ∩ U)◦. ut

Lemma 3. Let G ⊆ Pow(Ag) be an agent pattern and

noSym(G) := {{a} | ∃A ∈ G and a ∈ A}.

Let SG be a set of simplexes such that for any S ∈ SG we have noSym(G) ⊆ S◦.
The indistinguishability relation ∼G is reflexive on SG×SG and empty otherwise.

Proof. We first show reflexivity. If G = ∅, then trivially G ⊆ (S ∩S)◦ for any S.
Assume G 6= ∅. Let S ∈ SG. For each B ∈ G, we have to show that B ∈ (S∩S)◦,
i.e. that

there exists i with (B, i) ∈ S. (5)

Let (A, i) := max(S). Let b ∈ B. Because of noSym(G) ⊆ S◦, there exists l such
that ({b}, l) ∈ S. By S3 we get b ∈ A. Since b was arbitrary in B, we get B ⊆ A.
By S2 we conclude that (5) holds and symmetry is established.

We now show that ∼G is empty otherwise. Let S be a simplex such that
noSym(G) * S◦ and let T be an arbitrary simplex. Then there exists a,A with
a ∈ A ∈ G and {a} /∈ S◦, i.e.

for all i, ({a}, i) /∈ S. (6)

Suppose towards a contradiction that

G ⊆ (S ∩ T )◦ (7)

Because of A ∈ G we get A ∈ (S ∩ T )◦. Hence A ∈ S◦, i.e. there exists l with
(A, l) ∈ S. With S2 and {a} ⊆ A we find that there exists j with ({a}, j) ∈ S.
Contradiction to (6). Thus (7) cannot hold. ut

Corollary 1. ∼G is an equivalence relation on SG × SG.
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The following two lemmas establish basic properties of the indistinguishabil-
ity relation.

Lemma 4 (Anti-Monotonicity). G ⊆ H implies ∼H⊆∼G.

Proof. Assume G ⊆ H. For any two simplices S and T with S ∼H T , we have
G ⊆ H ⊆ (S ∩ T )◦ by definition and hence S ∼G T , which concludes the proof.

ut

Lemma 5 (Downward closure). Let C be a complex and S, T ∈ C. Further,
let A ∈ (S ∩ T )◦ and B ⊆ A. We find B ∈ (S ∩ T )◦.

Proof. From A ∈ (S ∩ T )◦, we obtain that there exists i such that (A, i) ∈ S
and (A, i) ∈ T . From S2 we find that there exists j such that (B, j) ∈ S. Thus
by C, we get (B, j) ∈ T and we conclude B ∈ (S ∩ T )◦. ut

From the previous two lemmas we immediately obtain the following:

Corollary 2. Let G be an agent pattern. Let A,B ⊆ Ag such that A ⊆ B ∈ G.
We have

∼G∪{A} = ∼G .

The next lemma states that adding synergy to an agent pattern makes it
stronger in the sense that it can distinguish more simplices. This is shown in
Example 1 where the pattern {{a}, {b}} cannot distinguish 〈abc0〉 and 〈abc1〉
but {{a, b}} can distinguish these two simplices.

Lemma 6. Let H1, H2, . . . ,Hn ⊆ Ag with n ≥ 2 We have

∼{H1∪H2,...,Hn} ⊆ ∼{H1,H2,...,Hn} .

Proof. From the Lemma 5 and Lemma 4 we find that

∼{H1∪H2,...,Hn} = ∼{H1∪H2,H1,H2,...,Hn} ⊆ ∼{H1,H2,...,Hn} .

ut

In traditional Kripke semantics, distributed knowledge of a set of agents is
modeled by considering the accessibility relation that is given by the intersec-
tion of the accessibility relations of the individual agents. The following lemma
states that in our framework, this intersection corresponds to the agent pattern
consisting of singleton sets for each agent.

Lemma 7. Let G ⊆ Ag and H =
⋃

a∈G{{a}}. We have⋂
a∈G
∼{{a}} = ∼H .

Proof. (S, T ) ∈
⋂

a∈G ∼{{a}} iff for each a ∈ G, we have {a} ∈ (S ∩ T )◦ iff (by
the definition of H) H ⊆ (S ∩ T )◦ iff S ∼H T . ut
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3 Logic

The logic of synergistic knowledge is a normal modal logic that includes a
modality [G] for each agent pattern G. It is closely related to the logic of dis-
tributed knowledge but has some additional validities concerning the pattern-
based modalities, see, e.g., (Sub) and (Clo) below.

Let Prop be a countable set of atomic propositions. Formulas of the language
of synergistic knowledge LSyn are inductively defined by the following grammar:

φ ::= p | ¬φ | φ ∧ φ | [G]φ

where p ∈ Prop and G is an agent pattern. The remaining Boolean connectives
are defined as usual. In particular, we set ⊥ := p ∧ ¬p for some fixed p ∈ Prop.

Definition 5 (Model). A modelM = (C, V ) is a pair where

1. C is a complex and
2. V : C→ Pow(Prop) is a valuation.

Definition 6 (Truth). Let M = (C, V ) be a model, w ∈ C, and φ ∈ LSyn. We
defineM, w  φ inductively by

M, w  p iff p ∈ V (w)

M, w  ¬φ iff M, w 6 φ

M, w  φ ∧ ψ iff M, w  φ andM, w  ψ

M, w  [G]φ iff w ∼G v impliesM, v  φ for all v ∈ C.

We writeM  φ ifM, w  φ for all w ∈ C. A formula φ is valid ifM  φ for
all modelsM.

The following formulas are valid:

[G](φ→ ψ)→ ([G]φ→ [G]ψ) (K)
[G]φ→ [G][G]φ (4)
φ→ [G]¬[G]¬φ (B)

[G]φ→ [H]φ if G ⊆ H (Mono)

Let G be an agent pattern. We define, as usual, the formula alive(G) to be
¬[G]⊥. For a single agent a we write alive(a) instead of alive({a}). The expected
equivalences hold:

M, w  alive(G) iff G ⊆ w◦ iff w ∼G w. (8)

Indeed, we haveM, w  ¬[G]⊥ iff it is not the case that for all v with w ∼G v,
it holds thatM, v  ⊥. This is equivalent to there exists v with w ∼G v, which
is equivalent to there exitsts v with G ⊆ (w ∩ v)◦. This is equivalent to w ∼G w
and also to G ⊆ w◦.
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Related to alive(·), the following formulas are valid:

alive(G) ∧ alive(H)→ alive(G ∪H) (Union)
alive(G)→ alive({B}) if there is A with A ∈ G and B ⊆ A (Sub)

alive(G)→ alive({A ∪B}) if A,B ∈ G (Clo)

(Union) is an immediate consequence of (8). For (Sub), assume w ∼G w, A ∈ G,
and B ⊆ A. We have A ∈ (w ∩ w)◦. By Lemma 5 we find B ∈ (w ∩ w)◦. Hence
w ∼{B} w, which yields (Sub). To show Clo, assume w ∼G w and A,B ∈ G.
Hence A ∈ (w ∩w)◦. That is A ∈ w◦, i.e. there exists i with (A, i) ∈ w. Let C, j
be such that (C, j) = max(w). By S3, we get A ⊆ C. Similarly, we find B ⊆ C,
and thus A ∪B ⊆ C. Using S2, we obtain A ∪B ∈ w◦. Therefore, w ∼{A∪B} w
and (Clo) is estabished.

Further, note that axiom (T) holds when restricted to groups of agents that
are alive:

alive(G)→ ([G]φ→ φ) (T)

Question 1. Do the axioms (K), (4), (B), (Mono), (Union), (Sub), and (Clo)
together with all propositional tautologies and the rules of modus ponens and
[G]-necessitation provide a complete axiom system for our notion of validity?

Lemma 7 motivates the following abbreviation. Let G ⊆ Ag be a set of
agents and set H :=

⋃
a∈G{{a}}. Then we let DG be the modality [H]. We call

this the distributed knowledge modality and let LD be the restriction of LSyn

that contains distributed knowledge DG as the only modality. Note that the
usual axioms for the logic of distributed knowledge, formulated in LD, hold with
respect to synergistic models.

Question 2. Is the logic of synergistic knowledge a conservative extension (with
respect to LD) of the logic of distributed knowledge?

4 Examples

In this section, we present some examples that illustrate possible applications
of our logic to distributed systems. Example 1 highlights one of the main char-
acteristics of synergetic knowledge. That is, the agents a and b can together
distinguish between the worlds 〈abc0〉 and 〈abc1〉 although they cannot do so
individually. Hence, our logic can express the difference between the patterns
{{a}, {b}} and {{a, b}}.

Regarding the notation, we will omit the set parentheses for agent patterns
whenever it is clear from the context and write for example [abc, ab, ac] instead
of [{{a, b, c}, {a, b}, {a, c}}].

Example 1 (Two triangles). Let Ag = {a, b, c}, p ∈ Prop, and consider the model
M = (C, V ) in Figure 2 which is given by the complex

C =


 abc0
ab0, bc0, ac0
a0, b0, c0

 ,

 abc1
ab1, bc1, ac1
a0, b0, c1
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and by a valuation V such that p ∈ V (〈abc0〉) and p 6∈ V (〈abc1〉). We find

a0

b0

c0 c1abc0 abc1

Fig. 2. A model in which two agents a and b can together distinguish between the
worlds X and Y . However, they cannot do so individually.

M, 〈abc0〉  [ab]p andM, 〈abc1〉  [ab]¬p,

because the worlds 〈abc0〉 and 〈abc1〉 can be distinguished due to

{{a, b}} 6⊆ (〈abc0〉 ∩ 〈abc1〉)◦ = {{a}, {b}}.

However, for the pattern H = {{a}, {b}} it holds that

H = {{a}, {b}} ⊆ (〈abc0〉 ∩ 〈abc1〉)◦,

and henceM, 〈abc0〉 6 [H]p. Lastly, if we add c to H, the agents know p:

M, 〈abc0〉  [a, b, c]p.

Another motivation for simplicial sets is that we can model how agents can
reason about each others death. As remarked by van Ditmarsch and Kuznets [4]
as well as by Goubault, Ledent and Rajsbaum [6], simplicial complexes are not
enough to model a setting where an agent considers it possible to be the only
one alive. Such scenarios are important, because they arise in failure detection
protocols. Example 2 shows such a model.

Example 2 (Two-agents). Let Ag = {a, b}, and consider the modelM = (C, V )
in Figure 3 which is given by an arbitrary valuation and the complex

C =

{{
ab0
a0, b0

}
, {a0}

}
It is straightforward to verify thatM, 〈ab0〉  alive(a) andM, 〈ab0〉  alive(b).
However, M, 〈a0〉, 6 alive(b) because {b} 6⊆ 〈a0〉◦ and hence M, 〈a0〉  [b]⊥.
Moreover, a alone does not know whether alive(b) because a cannot distinguish
〈a0〉 from 〈ab0〉 due to {{a}} ⊆ (〈a0〉 ∩ 〈ab0〉)◦.
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a0 b0
ab0

Fig. 3. A model in which a considers it possible that it is the only agent alive.

In Examples 3 and 4 we interpret synergy as having access to some shared
primitives. Given three agents, Example 3 captures the idea that for some appli-
cations, the agent pattern must include the area of the triangle and not just its
edges. Example 4 demonstrates that the patterns {{a, b}, {a, c}}, {{a, b}, {b, c}},
and {{b, c}, {a, c}} are weaker than the pattern {{a, b}, {a, c}, {b, c}}.

Example 3 (Consensus number). An n-consensus protocol is implemented by n
processes that communicate through shared objects. The processes each start
with an input of either 1 or 0 and must decide a common value. A consensus
protocol must ensure that

1. Consistency: all processes must decide on the same value.
2. Wait-freedom: each process must decide after a finite number of steps.
3. Validity: the common decided value was proposed by some process.

Herlihy [9] defines the consensus number of an object O as the largest n for
which there is a consensus protocol for n processes that only uses finitely many
instances of O and any number of atomic registers. It follows from the definition
that no combination of objects with a consensus number of k < n can implement
an object with a consensus number of n.

We can represent the executions of a n-consensus protocol as a tree in which
one process moves at a time. By validity and wait-freedom, the initial state of
the protocol must be bivalent (i.e. it is possible that 0 or 1 are decided), and
there must exist a state from which on all successor states are univalent. Hence,
the process that moves first in such a state decides the outcome of the protocol.
This state is called the critical state.

In order to show that an object has a consensus number lower than k, we
derive a contradiction by assuming that there is a valid implementation of a
k-consensus protocol. Next, we maneuver the protocol into a critical state and
show that the processes will not be able to determine which process moved first.
Therefore, for some process P , there exist two indistinguishable executions in
which P decides differently. However, if the object has a consensus number of k,
the processes will be able to tell who moved first.

Synergetic knowledge is able to describe the situation from the critical state
onwards. We interpret an element {p1, ..., pk} of a synergy pattern G as the
processes p1 up to pk having access to objects with a consensus number of k.
For each process pi, we define a propositional variable movei that is true if pi
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moved first at the critical state. Furthermore, we define

ϕi := movei ∧
∧

1≤j≤n and j 6=i

¬movej ,

i.e., if ϕi is true, then the i-th process moved first. LetM = (C, V ) be a model,
ifM  [G]ϕ1 ∨ [G]ϕ2 ∨ · · · ∨ [G]ϕn holds in the model, then it is always possible
for the processes in G to tell who moved first. Lastly, if G has n agents, we have
for any G′ with less than n agents

M 6 [G′]ϕ1 ∨ [G′]ϕ2 ∨ · · · ∨ [G′]ϕn,

which means that the access to objects with a consensus number of n is required.
For three agents a, b and c, the modelM = (C, V ) is given by

C =




abc0
ab0
bc0
ac0

a0, b0, c0

 ,


abc1
ab0
bc0
ac0

a0, b0, c0

 ,


abc2
ab0
bc0
ac0

a0, b0, c0




with a valuation V that represents that someone moved first, i.e.

M, 〈abc0〉  ϕa M, 〈abc1〉  ϕb M, 〈abc2〉  ϕc.

It is easy to check that 〈abc0〉 ∼ab,ac,bc 〈abc1〉 and hence, having access to an
object with consensus number 2 is not enough in order to distinguish those
worlds. However,

M  [abc]ϕa ∨ [abc]ϕb ∨ [abc]ϕc

is true and shows that access to objects with consensus number 3 suffices.

Example 4 (Dining cryptographers). The dining cryptographers problem, pro-
posed by Chaum [1], illustrates how a shared-coin primitive can be used by
three cryptographers (i.e. agents) to find out whether their employer or one of
their peers paid for the dinner. However, if their employer did not pay, the payer
wishes to remain anonymous.

For lack of space, we do not give a full formalisation of the dining cryptogra-
phers problem. Instead, we solely focus on the ability of agreeing on a coin-flip
and the resulting knowledge. In what follows, we will provide a model in which
the agents a, b and c can determine whether or not their employer paid if and
only if they have pairwise access to a shared coin.

Let the propositional variable p denote that their employer paid. We interpret
an agent pattern G = {{a, b}} as a and b, having access to a shared coin. Our
modelM = (C, V ), depicted in Figure 4, is given by the complex
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c0

b0

a0

bc0

ac0

ab
0

ac1
ab
1 bc1

Fig. 4. Dining cryptographers model.

C =




abc0
ab0
bc0
ac0

a0, b0, c0

 ,


abc1
ab1
bc0
ac0

a0, b0, c0

 ,


abc2
ab0
bc1
ac0

a0, b0, c0

 ,


abc3
ab0
bc0
ac1

a0, b0, c0

 ,


abc4
ab1
bc1
ac0

a0, b0, c0

 ,


abc5
ab1
bc0
ac1

a0, b0, c0

 ,


abc6
ab0
bc1
ac1

a0, b0, c0

 ,


abc7
ab1
bc1
ac1

a0, b0, c0




and the valuation V is chosen such that

p ∈ V (〈abc0〉), p 6∈ V (〈abc1〉), p 6∈ V (〈abc2〉), p 6∈ V (〈abc3〉),
p ∈ V (〈abc4〉), p ∈ V (〈abc5〉), p ∈ V (〈abc6〉), p 6∈ V (〈abc7〉).

Consider the agent pattern G = {{a, b}, {a, c}, {b, c}}, then

M  [G]p ∨ [G]¬p, (9)

i.e. in any world, if all agents have pairwise access to shared coins, they can know
the value of p. Furthermore, for each H ( G and each w ∈ C

M, w 6 [H]p ∨ [H]¬p. (10)

Notice that (10) states that there is no world, where an agent pattern H can
know whether p or ¬p, and hence, it is stronger thanM 6 [H]p ∨ [H]¬p.



Synergistic Knowledge 13

5 Communication

In this section, we will explore a different reading of agent patterns, namely as a
description of the communication happening between the agents. Let G be the
pattern {{a}, {b, c}}. We interpret this as b and c communicate with each other
but there is no communication between a and b or c. A formula [G]φ will thus
be interpreted as a knows φ and the group b, c has distributed knowledge of φ.
We can also distinguish the patterns {{a, b}, {b, c}} and {{a, b}, {b, c}, {a, c}}.
In the first one, a and c can only communicate via b whereas in the second one,
a and c have a direct communication channel.

Definition 7 (Connected). Let C ⊆ Pow(Ag), we call two elements X,Y ∈ C
connected in C if and only if there exist Z0, ..., Zk ∈ C with Zi ∩ Zi+1 6= ∅ for
0 ≤ i < k and Z0 = X and Zk = Y .

Definition 8 (Connected Component). Let C ⊆ Pow(Ag), we call C a con-
nected component if and only if for any X,Y ∈ C with X 6= Y it holds that X
and Y are connected in C.

Let G ⊆ Pow(Ag). We call H a maximal connected component of G if and
only if H ⊆ G and there is no connected component H ′ ⊆ G such that H is a
proper subset of H ′.

We can represent an agent pattern G as the union of its maximal connected
components. Let C1, . . . , Ck be the maximal connected components of G. We
have G =

⋃k
i=1 Ci and if X ∈ Ci and Y ∈ Cj with i 6= j, then X ∩ Y = ∅.

Definition 9 (Componentwise indistinguishability). Let G =
⋃k

i=1 Ci be
an agent pattern with k maximal connected components Ci. We say that G cannot
distinguish componentwise two simplices S and T , denoted by SEGT , if and only
if

∃1 ≤ j ≤ k. S ∼Cj
T,

i.e. there is some maximal component of G that cannot distinguish S and T .

We use the notation EG since this relation is used to model something like
every component of G knows that. For this section, we adapt the truth definition
as follows:

M, w  [G]φ iff w EG v impliesM, v  φ for all v ∈ C.

Let G := {{a} | a ∈ Ag}. Then we can read [G]φ as everybody knows that φ.
We immediately obtain the following properties:

Lemma 8. Let G =
⋃k

i=1 Ci be an agent pattern with k maximal connected
components Ci. Then EG is symmetric. Moreover, let SG be a set of simplexes
such that for any S ∈ SG we have noSym(Ci) ⊆ S◦ for some 1 ≤ i ≤ n. Then
the indistinguishability relation EG is reflexive on SG × SG.

Note that EG is not transitive. Also, anti-monotonicity does not hold in
general. It does, however, hold componentwise.
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Lemma 9 (Anti-monotonicity). Let G =
⋃k

i=1 Ci be an agent pattern with k
maximal connected components Ci. Let C be a connected component with C ⊇ Ci

for some 1 ≤ i ≤ k and let H := G ∪ C. We find that EH ⊆ EG.

Lemma 10 (Link). Let F,G,H ⊆ Pow(Ag) be connected components such that
F ∪G is connected and F ∪H is connected. The following formula is valid:

[G]A ∧ [H]B → [F ∪G ∪H](A ∧B).

Proof. First, observe that F ∪ G ∪ H is connected. Thus, by Lemma 9, [G]A
implies [F ∪ G ∪H]A and [H]B implies [F ∪ G ∪H]B. Since [F ∪ G ∪H] is a
normal modality, we conclude [F ∪G ∪H](A ∧B). ut

Example 5 (Missing link). Two networks G andH, each modelled as a connected
component, both know that if malicious activity is detected, certain services
must be stopped. Let mact be a propositional variable that indicates whether an
intruder has been spotted and let stop indicates that the services are disabled.
Since the procedure is known to both networks, we have

[G](mact→ stop) ∧ [H](mact→ stop) as well as [G ∪H](mact→ stop).

Suppose now that G detects malicious activity, i.e. [G]mact. Thus, G will stop
certain services, i.e. [G]stop. If the networks cannot communicate with each
other, i.e. G ∪H is not connected, then H will not stop the services. Hence, G
and H as a whole are not following the security protocol, i.e. ¬[G∪H]stop, and
might leave the system in a vulnerable state. However, if a coordinating node
relays messages from G to H, then H could shut down its services as well. By
Lemma 10 we find that for some network F , such that F ∪G as well as F ∪H
is connected, it holds that

([G ∪H](mact→ stop) ∧ [G]mact)→ [F ∪G ∪H]stop.

6 Conclusion

In this paper we present a semantics for epistemic reasoning on simplicial sets
and introduce the synergistic knowledge operator [G]. Synergistic knowledge
describes relations among agents of a group and enables us to reason about
what the group can know beyond traditional distributed knowledge. For exam-
ple, in Example 4, the pattern {{a, b}, {a, c}} differs from {{a, b}, {a, c}, {b, c}},
although both contain the same agents.

Furthermore, we develop a logic based on our model and study some of
its validities. We show that classical distributed knowledge, as introduced by
Halpern and Moses [8], can be expressed with the operator [G], if G is a set of
singleton sets.

Moreover, we provide various examples of how our logic can be used to de-
scribe problems that arise in distributed computing. In Example 2 we illustrate
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how to model scenarios that arise in failure detection protocols, and in Exam-
ples 3 and 4 we showcase how synergistic knowledge may occur in distributed
systems, if agents access shared primitives.

Lastly, we discussed a new notion of indistinguishability that accounts for the
connectivity of the agent pattern G. Componentwise indistinguishability seems
fruitful for analysing knowledge in networks with respect to their underlying
topology.
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