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Abstract. The increasing applications of AI systems require personalized ex-
planations for their behaviors to various stakeholders since the stakeholders may
have various backgrounds. In general, a conversation between explainers and ex-
plainees not only allows explainers to obtain explainees’ background, but also
allows explainers to tailor their explanations so that explainees can better under-
stand the explanations. In this paper, we propose an approach for an explainer to
tailor and communicate personalized explanations to an explainee through hav-
ing consecutive conversations with the explainee. We prove that the conversation
terminates due to the explainee’s justification of the initial claim as long as there
exists an explanation for the initial claim that the explainee understands and the
explainer is aware of.
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1 Introduction

Explainable artificial intelligence (XAI) is one of the important topics in artificial intel-
ligence due to the recognition that it is important for humans to understand the decisions
or predictions made by AI systems [19]. Understanding the behavior of AI systems does
not only improve the user experience and trust in such systems, but it also allows engi-
neers to better configure them when their behavior needs to change. This is particularly
important when AI systems are used in safety-critical domains such as healthcare where
decisions made or influenced by clinical decision support systems ultimately affect hu-
man life and well-being. In such systems, related stakeholders and professionals must
understand how and why certain decisions are made [1].

An important requirement for explainable AI systems is to ensure that the stake-
holders with various backgrounds understand the provided explanations, the underly-
ing rationale and inner logic of the decision or prediction process [27]. For example,
an explanation of why we should drink enough water throughout the day that is for-
mulated in specialized medical terms may be understandable to medical professionals,
but not to young children who have no medical knowledge or background. Therefore,
AI systems should be able to provide personalized and relevant explanations that match
the backgrounds of their stakeholders. What we mean by personalization is tailoring
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explanations to accommodate specific users, instead of groups of users. How can the AI
systems obtain the backgrounds of their stakeholders? Hilton argues that an explanation
is a social process of conveying why a claim is made to someone [11]. It is the conver-
sations between explainers and explainees that allow explainers to obtain explainees’
background and enable explainers to tailor their explanations so that explainees can
better understand the explanations.

In this paper, we propose a novel approach to automatically construct and commu-
nicate personalized explanations through the conversation between an explainer and an
explainee. Our approach exploits tools and results from justification logic [4,5,15]. The
first justification logic, the Logic of Proofs, has been introduced by Artemov to give
a classical provability interpretation to intuitionistic logic [2]. Later, various possible
worlds semantics for justification logic have been developed [3,8,14,16], which led to
epistemic interpretations of justification logic. We will use a logic that features both the
modal ◻-operator and explicit justification terms t, a combination that goes back to [6].
Our approach is built on the idea of reading an agent understands an explanation E for
a claim F as the agent has a justification t for F such that t also justifies all parts of E .
This is similar to the logic of knowing why where knowing why F is related to having a
justification for F [32]. With this idea, the explainer can interpret the explainee’s back-
ground from her feedback regarding whether she understands the explanation that has
just been received, and provide further explanations given what she has learned about
the explainee.

We first develop a two-agent modular model that allows us to represent and reason
about agents’ knowledge and justification. We then model how the explainee gains more
justified knowledge from explanations, and how the explainer specifies her preferences
over available explanations using specific criteria. We finally model the conversation
where the explainee provides her feedback on the explanation that has just been re-
ceived and the explainer constructs a further explanation given her current knowledge
about the explainee’s background interpreted from the explainee’s feedback. Our ap-
proach ensures that the conversation will terminate due to the explainee’s justification
of the initial claim as long as there exists an explanation for the initial claim that the
explainee understands and the explainer is aware of. This paper is an extended version
of [18]. In this version, the definition of explanations is revised to be more general,
and the explainer can reason about the explainee’s feedback to gain information about
the explainee’s background according to our definition of understanding explanations,
while in [18] the explainer does not perform the reasoning but directly gains the infor-
mation about the explainee’s background, which is less intuitive. Furthermore, we have
defined two operations between explanations, enabling us to characterize the criteria
that we design for explanation evaluation.

2 Multi-agent Modular Models

Let Prop be a countable set of atomic propositions. The set of propositional formu-
las LProp is inductively defined as usual from Prop, the constant �, and the binary
connective →. We now specify how we represent justifications and what operations
on them we consider. We assume a countable set JConst = {c0, c1, . . .} of justification
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constants. Further, we assume a countable set JVar of justification variables, where each
variable is indexed by a propositional formula and a (possibly empty) list of proposi-
tional formulas, i.e. if A1, . . . ,An,B ∈ LProp, then xA1,...,An

B is a justification variable.
Constants denote atomic justifications that the system no longer analyzes, and variables
denote unknown justifications. Justification terms are defined inductively as follows:

t ∶∶= c ∣ x ∣ t ⋅ t

where c ∈ JConst and x ∈ JVar. We denote the set of all terms by Tm. A term is ground
if it does not contain variables, so we denote the set of all ground terms by Gt. A term
can be understood as a proof or an evidence. Let Agt be a finite set of agents. Formulas
of the language LJ are defined inductively as follows:

A ∶∶= p ∣ � ∣ A→ A ∣ ◻iA ∣ JtKiA

where p ∈ Prop, i ∈ Agt and t ∈ Tm. Formula ◻iA is interpreted as “agent i knows A”,
and formula JtKiA is interpreted as “agent i uses t to justify A”.

The model we use in this paper is a two-agent modular model that interprets justifi-
cation logic in a two-agent context. It is a Kripke model extended with two agents and
two evidence functions. In general, evidence accepted by different agents is distinct, so
evidence terms for each agent are constructed using her own basic evidence function.

Definition 2.1 (Two-agent Modular Models). A two-agent modular model over a set
of atomic propositions Prop and a set of terms Tm is defined as a tupleM = (Agt,W, R̃, ∗̃, π),
where

– Agt = {1,2} is a set of agents, and we assume that it is always the case that agent
1 announces an explanation to agent 2;

– W /= ∅ is a set of worlds;
– R̃ = {R1,R2} for each agent in Agt, where Ri ⊆W×W is a reflexive and transitive

accessibility relation;
– ∗̃ = {∗1,∗2} for each agent in Agt, where ∗i ∶ Tm×W → P(LProp) is an evidence

function that maps a term t ∈ Tm and a world w ∈W to a set of formulas in LProp;
– π ∶ Prop→ 2W is an evaluation function for the interpretation of propositions.

We assume that the agents have finite reasoning power. Therefore, we restrict our mod-
els such that for each w ∈W and agent i,

– there are only finitely many t ∈ Gt such that ∗i(t,w) is non-empty, and
– for each t ∈ Gt, the set ∗i(t,w) is finite.

Moreover, it is not necessary that

(F → G) ∈ ∗i(s,w) and F ∈ ∗i(t,w) imply G ∈ ∗i(s ⋅ t,w) ( †)

Definition 2.2 (Truth Evaluation). We define what it means for a formula A to hold
under a two-agent modular modelM and a world w, written asM,w ⊧ A, inductively
as follows:

– M,w /⊧ �;
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– M,w ⊧ P iff w ∈ π(P );
– M,w ⊧ F → G iffM,w /⊧ F orM,w ⊧ G;
– M,w ⊧ ◻iF iff for any u ∈W , if wRiu, thenM, u ⊧ F ;
– M,w ⊧ JtKiF iff F ∈ ∗i(t,w).

Other classical logic connectives (e.g.,“∧”, “∨”) are assumed to be defined as abbre-
viations by using � and→ in the conventional manner. We say that a formula A is valid
in a modelM, written asM ⊧ A ifM,w ⊧ A for all w ∈W . We say that a formula A
is a validity, written as ⊧ A ifM ⊧ A for all modelsM.

We require that modular models satisfy the property of justification yields knowl-
edge: for any ground term t, agent i, and world w, if F ∈ ∗i(t,w), then for any u ∈W ,
if wRiu, thenM, u ⊧ F , which gives rise to the following validity:

⊧ JtKiF → ◻iF. (JYK)

Note that in contrast to usual models of justification logic, we require justification yields
knowledge only for ground terms (and not for all terms as is originally required in mod-
ular models). The reason is that we interpret justification variables in a new way. Tradi-
tionally, a justification variable stands for an arbitrary justification. Hence JxKiF → ◻iF
should hold: no matter which justification we have for F , it should yield knowledge of
F . In this paper, we use a different reading of justification variables. They stand for
open assumptions, which do not (yet) have a justification. Therefore, JxKiF will not
imply knowledge of F . Our modular model gives rise to the following validity due to
the reflexivity of the accessibility relations:

⊧ ◻iF → F.

Combining this with validity JYK, we find that justifications by ground terms are fac-
tive: for any ground term t and any formula F , we have

⊧ JtKiF → F.

Notice that our model does not respect the usual application operation (⋅) on evidence
terms due to the removal of constraint (†) from our model,

/⊧ JsKi(F → G)→ (JtKiF → Js ⋅ tKiG).

This is because agents are limited in their reasoning powers and thus might not be able
to derive all of the logical consequences of their justified knowledge by constructing
proofs, which is why agents need explanations.

3 Understanding and Learning from Explanations

Given a claim, an agent can construct a deduction for a claim, which we call an ex-
planation of the claim in this paper. An explanation is inductively defined as a tree of
formulas.
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Definition 3.1 (Explanations). Explanations are inductively defined. An explanation
is given by

Λ1, . . . , Λn

B

where each Λi is an explanation or a formula of LProp and B is a formula of LProp.
Hence, an explanation is a finite tree of formulas with at least two nodes.

Let E be an explanation. We say that

– The claim of E , denoted by claim(E), is the root of E;
– Pr(E ,B) is the list of premises of B, which is given as the list of the child nodes

of B (strictly speaking, we need an occurrence of B in E);
– a formula is a hypothesis in E if it is a leaf node of E , and we use H(E) to denote

the set of hypotheses of E;
– a formula in E is called a derived formula if it is not a leaf node of E , and we use

D(E) to denote the set of derived formulas of E .

Having defined an explanation as a tree of formulas, we can define a sub-explanation
of a given explanation as a sub-tree.

Definition 3.2 (Sub-explanations). Given two explanations E and E ′, we say that E ′
is a sub-explanation of E if E ′ is a sub-tree of E . We use sub(E , F ) to denote the sub-
explanation of E with claim(E ′) = F .

One important property of justification logic is its ability to internalize its own no-
tion of proof. If B is derivable from A1, . . . ,An, then there exists a term t⋅x1 ⋅⋯⋅xn such
that Jt ⋅ x1 ⋅ ⋯ ⋅ xnKiB is derivable from Jx1KiA1, . . . , JxnKiAn.4 The justification term
t ⋅x1 ⋅⋯ ⋅xn justifying B represents a blueprint of the derivation of B from A1, . . . ,An.
In this section, we will define a procedure that mimics the application operation on
terms to construct derived terms in order to internalize the deduction of an explanation.
Given an explanation, a derived term of the conclusion with respect to the explanation is
constructed with the justifications of the premises and the deduction from the premises
to the conclusion. Typically, if there exists any premises that the agent cannot justify,
then a variable is used for its justification in the derived term; if the agent cannot justify
the deduction, then a variable is used as the derived term.

Definition 3.3 (Construction of Derived Terms). Given a two-agent modular model
M, a world w, an explanation E , and a derived formula B occurring in E , we define
the explainee’s derived term of B with respect to E inductively as follows:

– Case: B is the claim of a simple explanation E ′ = A1, . . . ,An/B. We distinguish
two cases:
1. If there exists d ∈ Gt such thatM,w ⊧ JdK2(A1 → (⋯→ (An → B)⋯)), then

the derived term of B has the form d ⋅ t1⋯tn where the terms ti are given by: if
there exists si ∈ Gt withM,w ⊧ JsiK2Ai, then set ti = si; else, set ti = xAi ;

2. otherwise, the derived term of B has the form x
Pr(E,B)
B .

4 This property requires a so-called axiomatically appropriate constant specification.
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– Case: B is the claim of an explanation E ′ = E ′1, . . .E ′n/B. We distinguish two cases:
1. If there exists d ∈ Gt such that

M,w ⊧ JdK2(claim(E ′1)→ (⋯→ (claim(E ′n)→ B)⋯)),

then the derived term of B has the form d ⋅ t1⋯tn where each ti is the derived
term of claim(E ′i) with respect to E;

2. otherwise, the derived term of B has the form x
Pr(E,B)
B .

Example 1. Assume that we have a two-agent modular model M. Agent 2 hears an
example E = A/B/C in world w, and it is the case that

M,w ⊧ JtAK2A
M,w ⊧ JdA→BK2(A→ B)
M,w ⊧ JdB→CK2(B → C)

for ground terms tA, dA→B , and dB→C , then the derived term of B with respect to E is
dA→B ⋅ tA, and the derived term of C with respect to E is dB→C ⋅ (dA→B ⋅ tA). If the
explainee cannot justify A, then the derived term of C with respect to E would become
dB→C ⋅ (dA→B ⋅xA); if the explainee cannot justify A→ B, then the derived term of C
with respect to E would become dB→C ⋅ xA

B .

The explainee’s justification for a deduction can be seen as her reasoning capability and
can be different from agent to agent. If the explainee cannot justify a deduction step,
then the deduction is beyond her reasoning capability. In real life, agents’ reasoning
capabilities can be limited by factors such as age, profession and experience. For ex-
ample, a mathematician can follow complicated mathematical proofs, while a primary
student can only follow simple mathematical proofs. Further, for a derived formula in
an explanation, the explainee might have another term that has nothing to do with the
explanation to justify it. But using this term to justify the formula does not mean that
the explainee can follow the explanation, so we need to require that a derived term be
formed by justification terms that are used to justify its premises and deduction in the
explanation. We should also notice that a derived term of a derived formula with re-
spect to an explanation might not be unique, because there might exist multiple terms
for the explainee to justify the hypotheses in the explanation, making the derived terms
different.

Once an agent hears an explanation, she can update her justification with derived
terms that she constructs, which means that the agent learns from the explanation and
has more justified knowledge.

Definition 3.4 (Learning from Explanations). Given a two-agent modular modelM,
a world w and an explanation E , after the explainee hears E in w, M is updated as
M∣(2,w,E), whereM∣(2,w,E) = (Agt,W, R̃, ∗̃′, π) is defined as follows:

– for any F ∈ D(E), ∗′2(t,w) = ∗2(t,w) ∪ {F}, where t is the explainee’s derived
term of F with respect to E;
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– for any s ∈ Tm and any G ∈ LProp, if G ∈ ∗2(s,w), then G ∈ ∗′2(s[r/xclaim(E)],w)
and G ∈ ∗′2(s[r/x

H(E)

claim(E)
],w), where r is the explainee’s derived term of claim(E)

with respect to E;
– for the explainer, ∗′1(⋅) = ∗1(⋅).

In words, after the explainee hears explanation E in world w, for each derived formula
F in E , the explainee’s justification of F will be updated with its derived term t; the
derived term r of claim(E) with respect to E is substituted for every occurrence of
xclaim(E) and x

H(E)

claim(E)
in the explainee’s justification. Recall that agents in this paper

have limited reasoning powers and thus might be unable to derive all of the logical
consequences from their knowledge. Hearing an explanation allows the explainee to
gain new justified knowledge by connecting existing justified knowledge. Note that we
do not need to remove the explainee’s epistemic access R2 to worlds where F does
not hold to guarantee validity JYK. The reason is as follows: if t is not a ground term,
then the explainee has yet to justify F , and thus the explainee’s knowledge should
remain the same as before learning from explanation E ; if t is a ground term, then the
explainee knows F due to validity JYK, and the knowledge of F is ensured by the
validity of the modal k-axiom (our model still respects the epistemic closure). Other
agents’ justification and epistemic access remain the same. Apart from gaining new
justified knowledge for derived formulas, the explainee can also learn deduction from
explanation. For example, the explainee can learn A → C from A → B and B → C
in an explanation, gaining more reasoning capability. However, we notice that this is
beyond the scope of this paper, and future work on learning from explanations can have
more sophisticated formalism on this part.

The learning process gives rise to some intuitive consequences. First of all, when
the explainee is already aware of the explanation before it is announced, the explainee
will not gain any new justified from the explanation. Secondly, it is possible for the
explainee to gain justification for the formulas that are not contained in the explanation,
because the learning process contains substituting derived terms of formulas for their
corresponding variables, which means that the explainee can justify more than what an
explanation has. As standard, the resulting updated model is still a two-agent modular
model.

Proposition 3.1. Given a two-agent modular modelM, a world w and an explanation
E , after the explainee hears explanation E in world w,M is updated asM∣(2,w,E),
which is still a two-agent modular model.

Proof. The update defined in Definition 3.4 only affects the explainee’s evidence func-
tion, so we need to check whether the updated model still has validity JYK. Suppose the
derived terms t and s that function ∗2 is updated with are ground terms, which means
that the explainee can justify all the hypotheses and deduction steps for F and G (as
Proposition 3.2 will prove). Since the original model has validity JYK, the explainee
knows the hypotheses and deduction steps. Due to the epistemic closure, the explainee
also has knowledge of F and G.

We then extend our language LJ with new formulas of the form [i ∶ E]φ, read as “φ
is true after agent i hears explanation E”, and its evaluation is defined with respect to a
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two-agent modular modelM and a world w as follows:

M,w ⊧ [i ∶ E]φ iff M∣(i,w,E),w ⊧ φ.

Intuitively, an agent understands an explanation if the derived term of its conclusion
does not contain any variables (unknown justification), i.e., it is a ground term.

Definition 3.5 (Understanding Explanations). Given a two-agent modular modelM,
a world w and an explanation E , let t be the explainee’s derived term of claim(E) with
respect to E in world w. We say that the explainee understands E in world w iff t is a
ground term.

Example 2. In Example 1, the explainee understands explanation E if the derived term
of C with respect to E is dB→C ⋅ (dA→B ⋅ tA); the explainee cannot understand explana-
tion E if the derived term of C with respect to E is dB→C ⋅ (dA→B ⋅ xA) or dB→C ⋅ xA

B .

Given that an explanation is defined as a deduction tree, we have sufficient and
necessary conditions for understanding an explanation: an agent understands an expla-
nation if and only if the agent can justify all the hypotheses and deduction steps that are
used in the explanation. Let G be a formula and L = A1, . . . ,An be a list of formulas.
Then the expressionÔ⇒

L
G stands for A1 → (⋯→ (An → G)⋯).

Proposition 3.2. Given a two-agent modular modelM, a world w and an explanation
E , the explainee understands explanation E in world w iff

– for any F ∈H(E), there exists a ground term t ∈ Gt such thatM,w ⊧ JtK2F,
– for any G ∈D(E), there exists a ground term s ∈ Gt such that

M,w ⊧ JsK2( Ô⇒
Pr(E,G)

G).

Proof. The explainee understands E if and only if the derived term of claim(E) that the
explainee constructs with respect to E is a ground term. Given the way of constructing
derived terms, the derived term of claim(E) is ground if and only if the explainee can
justify all parts of claim(E), i.e., all the hypotheses and deduction steps in claim(E).

Conversely, the agent cannot understand the announced explanation if and only if there
exists a hypothesis that the agent cannot justify, or there exists a deduction step that
is beyond the agent’s reasoning capability, making that the agent cannot construct a
ground derived term for each derived formula in the explanation after hearing the ex-
planation. Moreover, if the agent understands an explanation, she is able to justify every
derived formula in the explanation with a ground term after hearing the explanation.

Proposition 3.3. Given a two-agent modular modelM, a world w and an explanation
E , if the explainee understands explanation E , then for any derived formula F ∈D(E),
there exists a ground term t such that

M,w ⊧ [2 ∶ E]JtK2F.
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Proof. If the explainee understands E , then the explainee can justify all the hypotheses
and deduction steps in claim(E). Given the way of constructing derived terms and
learning from explanations, the explainee can then justify any derived formula in E
with a ground term.

However, the reverse direction does not hold, namely having this formula does not
necessarily imply that the explainee understands explanation E , because the ground
term t might have nothing to do with the explanation. Another important property about
learning from an explanation is that for an agent’s justified knowledge that have nothing
to do with the explanation, it will remain the same after hearing an explanation, and it
was also the case before hearing the explanation.

Proposition 3.4. Given a two-agent modular modelM, a world w and an explanation
E , if the explainee constructs a derived term tF for each derived formula F with respect
to E , then for any ground term s ∈ Gt that does not contain tF and any formula P ∈
LProp,

M,w ⊧ JsK2P ↔ [2 ∶ E]JsK2P.

Proof. Direction →: The update approach in Definition 3.4 contains expanding just-
fied knowledge and replacing variable terms with terms that have just been constructed.
Since s is a ground term, it will not get replaced after E is announced. Thus, if the ex-
plainee justifies P with s before E is announced, it is still the case after E is announced.
Namely,M,w ⊧ JsK2P → [2 ∶ E]JsK2P . Direction ←: As s does not contain tF , it is
not constructed due to E . Thus, if the explainee justifies P with s after E is announced,
it is already the case before E is announced. Namely,M,w ⊧ JsK2P ← [2 ∶ E]JsK2P .

The direction from left to right is the persistence principle saying that an agent’s knowl-
edge always get expanded after hearing an explanation. The direction from right to left
states that if after hearing an explanation the agent knows P for a reason that is in-
dependent on the explanation, then before hearing the explanation the agent already
knowd P for the same reason. In other words, having terms in our logical language also
allows the agent to distinguish the justified knowledge due to the explanation from the
justified knowledge due to another, unrelated reasons, which purely modal logic cannot
formulate.

Example 3. Continued with Example 1, suppose the explainee uses term dB→C ⋅ xA
B to

justify C because she cannot justify the deduction from A to B. After hearing explana-
tion E , it is the case that

M,w ⊧ [2 ∶ E]JdB→C ⋅ xA
BK2C.

The explainee continues to hear another explanation E ′ = A/D/B, and it is the case that

M,w ⊧ [2 ∶ E]JtAK2A,

M,w ⊧ [2 ∶ E]JdA→DK2(A→D),
M,w ⊧ [2 ∶ E]JdD→BK2(D → B).
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The explainee then can construct the derived term of B with respect to E ′ as dD→B ⋅
(dA→D ⋅ tA),

M,w ⊧ [2 ∶ E ′][2 ∶ E]JdD→B ⋅ (dA→D ⋅ tA)K2B.

Moreover, according to the learning approach in Definition 3.4, dD→B ⋅ (dA→D ⋅ tA) is
substituted for every occurrence of xA

B in the explainee’s justification. Thus, the derived
term of C with respect to E becomes dB→C ⋅ (dD→B ⋅ (dA→D ⋅ tA)),

M,w ⊧ [2 ∶ E ′][2 ∶ E]JdB→C ⋅ (dD→B ⋅ (dA→D ⋅ tA))K2C.

Now we can summarize that a user-agent profile consists of her justified knowledge
and deductions. It is important for the explainer to gain information about these two
aspects of the explainee through having consecutive conversations with the explainee
in order to provide an explanation that can be understood by the explainee.

4 Explanation Evaluation

In the previous section, we presented how the explainee’s mental state is updated after
hearing an explanation. In this section, we will investigate how the explainer selects an
explanation for announcing to the explainee. First of all, an explanation is selected from
the explanations that the explainer is aware of, namely the explanations where all the
hypotheses as well as all the derived formulas are justified by the explainer with ground
derived terms with respect to the explanation. Secondly, an explanation that contains
information that the explainee cannot justify should not be selected. In order to express
these two requirements, we need to extend our language LJ with new formulas of the
form △iP , read as ”agent i can justify P ”, and its evaluation is defined with respect to
a two-agent modular modelM and a world w as follows:

– M,w ⊧△iP iff there exists t ∈ Gt such thatM,w ⊧ JtKiP .

Compared with formula JtKiP , the term t is omitted in formula △iP , meaning that
agent i can justify A but we don’t care how she justifies P . Because of validity JYK,
we have the following validity:

⊧△iP → ◻iP.

Definition 4.1 (Available Explanations). Given a two-agent modular modelM and a
world w, we say that an explanation E is available for the explainer to the explainee in
world w iff

– there exists t ∈ Gt such that t is a derived term of claim(E) with respect to E and
M,w ⊧ JtK1claim(E);

– there does not exist P ∈H(E) such thatM,w ⊧ ◻1¬△2 P ;
– there does not exist Q ∈D(E) such thatM,w ⊧ ◻1¬△2 ( Ô⇒

Pr(E,Q)
Q).
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Given a formula F as a claim and a set of formulas A as hypotheses, the set of agent 1’s
available explanations to the explainee for proving F from A is denoted as

λM,w
1,2 (A,F ) = {E ∣ claim(E) = F,H(E) = A if A /= ∅, and

E is available for the explainer to the explainee givenM and w}.

We write λM,w
1,2 (A,F ) as λM,w(A,F ) when the agents are clear from the context.

Compared with the explainee that needs to construct derived terms of derived formulas
in an explanation, the explainer has already justified all the derived formulas in an
explanation that is available to him by derived terms and makes sure that there does
not exist a hypothesis or a deduction that the explainee cannot justify.

If an explanation is available to the explainer, she can announce it to the explainee.
But when there are multiple available explanations, the explainer must select one among
them given what she knows about the explainee. The question is what criteria the ex-
plainer can hold for explanation selection. Notice that the explainer and the explainee
are engaged in a conversation, so they are expected to adhere to basic conversational
rules. Jaspars and Hilton argue that a good explanation must align with the mental
model of the explainee [12][13]. Therefore, the explainer should select an explanation
that is most likely to be understood by the explainee. Looking back at our definition
of understanding an explanation, we can say that one explanation is more likely to be
understood by an agent than another explanation if the former one contains more hy-
potheses and deductions that are justified by the agent than the latter one. However,
this criterion alone is insufficient. Simpler and more general explanations are tested to
be better explanations [26][22], and providing more information than necessary would
increase the cognitive load of the explainee. Thus, agent 1 is supposed to make short
explanations, favoring those with fewer deductive steps (i.e., derived formulas). Since
the goal of the explainer is to announce an explanation that can be understood by the ex-
plainee, it makes sense for the first criterion to have priority over the second one. In this
paper, we impose a total pre-order ≾ over available explanations to represent the prefer-
ence between two explanations with respect to these two criteria. For better expression,
we use NM,w

1,2 (E) to denote the set of hypotheses and deductions in explanation E that
the explainer is not sure whether the explainee can justify or not.

NM,w
1,2 (E) = {F ∣M,w ⊧ ¬ ◻1 △2F, where F is a hypothesis in E , or

M,w ⊧ ¬ ◻1 △2( Ô⇒
Pr(E,F )

F ), where F is a derived formula in E .}

We might write NM,w(E) for short if the agents are clear from the context.

Definition 4.2 (Preferences over Explanations). Given a two-agent modular model
M and a world w, for any two explanations E ,E ′, E ≾M,w E ′ iff

– ∣NM,w(E)∣ > ∣NM,w(E ′)∣; or
– ∣NM,w(E)∣ = ∣NM,w(E ′)∣ and D(E) ≥D(E ′).
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As is standard, we also define E ∼M,w E ′ to mean E ≾M,w E ′ and E ′ ≾M,w E , and
E ≺M,w E ′ to mean E ≾M,w E ′ and E /∼M,w E ′. The above definition of preferences be-
tween two explanations specifies how the explainer selects an explanation to announce
to the explainee: given two available explanations E and E ′, the explainer first compares
two explanations in terms of the number of hypotheses and deductions that might not
be justified by the explainee, and the one with less number is more preferable; if both
explanations have the same number of hypotheses and deductions that might not be jus-
tified by the explainee, then the explainer compares these two explanations in terms of
the number of deduction steps in the explanations, and the one with less number is more
preferable. Using this approach, the explainer always cuts out the part that she knows
for sure that agent 2 can justify, or replaces some part of the explanation with a shorter
deduction that she knows that the explainee can justify, making explanations shorter.

In order to formalize these properties, we define an operation of replacement be-
tween explanations. The idea is that we can replace some part of an explanation E ,
which can be a sub-explanation or a hypothesis, with another explanation E ′ if they
claim for the same thing, denoted as E[E ′].

Definition 4.3 (Replacement). Let E ′ be an explanation.

– If F = claim(E ′), then F [E ′] ∶= E ′; otherwise, F [E ′] ∶= F .
– If claim(E ′) = B, then

Λ1, . . . , Λn [E ′] = E ′
B

otherwise,

Λ1, . . . , Λn [E ′] =
B

Λ1[E ′], . . . , Λn[E ′]
B

The operation is defined inductively. If replacement is operated on formula F and ex-
planation E ′, then we need to check whether F is the claim of E ′. If yes, F is replaced
with E ′; if no, then F stays there. If explanation E ′ has B as its claim, then the whole
explanation for B is replaced with E ′; otherwise, the replacement is operated on Λ1 to
Λn. In the case where F does not occur anywhere in E , the operation returns E . Notice
that, if what E ′ replaces is a hypothesis in E , the operation can be seen as combining E
and E ′. We can see how the operation of replacement is performed from Fig. 1.

Given an explanation E and a derived formula F in E , if the explainer knows for
sure that the explainee can justify F , then the explainer can cut out the deduction for F
from E , resulting a shorter explanation E ′.
Proposition 4.1. Given a two-agent modular model M and a world w, for any two
explanations E and E ′, E ≺M,w E ′ if

– there exists a formula F ∈D(E)/{claim(E)} such thatM,w ⊧ ◻1 △2 F ,
– E = E ′[sub(E , F )].

Proof. Given two explanations E and E ′, the explainer first compares the number of
hypotheses and deductions that might not be justified by the explainee. As M,w ⊧
◻1 △2 F ,
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Fig. 1: Operations between explanations.

E = E ′[sub(E , F )], E ′ is part of E . The explainer knows for sure that the explainee can
justify F (M,w ⊧ ◻1△2F ), but the sub-explanation sub(E , F )might contain hypothe-
ses and deductions that might not be justified by the explainee. Thus, ∣NM,w(E)∣ ≥
∣NM,w(E ′)∣. If ∣NM,w(E)∣ > ∣NM,w(E ′)∣, we have E ≺M,w E ′. If ∣NM,w(E)∣ =
∣NM,w(E ′)∣, the explainee then compares the number of deduction steps in the ex-
planations. Since E ′ is part of E , D(E) >D(E ′). So we have E ≺M,w E ′ as well.

Moreover, given an explanation E , if the deduction in E can skip a step by replacing the
sub-explanation for F with E ′′, and the explainer is sure that the explainee can justify
the skipped deduction in E ′′, then the explainer will replace the sub-explanation for F
with E ′′, resulting a shorter explanation E ′. Skipping a step can be done by replacing
one of the premises of Ea, F , with the premises of F for constructing E ′′. All the
derived formulas in E ′′ except the claim of E ′′ are derived in the same way as in the
sub-explanation for F .

Proposition 4.2. Given a two-agent modular modelM and a world w, for any two ex-
planations E and E ′, E ≺M,w E ′ if there exists a formula F ∈D(E) and an explanation
E ′′ such that

– E ′ = E[E ′′],
– there exists G ∈ Pr(E , F ) s.t.

Pr(E ′′, claim(E ′′)) = Pr(E ,G) ∪ Pr(E , F )/{G};

and
M,w ⊧ ◻1 △2 ( Ô⇒

Pr(E ′′,claim(E ′′))
claim(E ′′)).

– for any formula H ∈D(E ′′)/{claim(E ′′)}:

Pr(E ′′,H) = Pr(E ,H).

Proof. Given two explanations E and E ′, the explainer first compares the number of
hypotheses and deductions that might not be justified by the explainee. Because E ′ =
E[E ′′], the only difference between E and E ′ is the deduction for F . Since there exists
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G ∈ Pr(E , F ) s.t. Pr(E ′′, claim(E ′′)) = Pr(E ,G) ∪ Pr(E , F )/{G}, which is to re-
place one of F ’s premises in E , G, with G’s premises in E for constructing claim(E ′′)’s
premises in E ′′, F is derived indirectly from Pr(E ′′, claim(E ′′)) in E , while it is done
directly in E ′′. As the explainer knows for sure that the explainee can justify the de-
duction step for claim(E ′′) in E ′′ (M,w ⊧ ◻1 △2 ( Ô⇒

Pr(E ′′,claim(E ′′))
claim(E ′′))),

but the deduction from Pr(E ′′, claim(E ′′)) to F might contain deductions that might
not be justified by the explainee. Thus, ∣NM,w(E)∣ ≥ ∣NM,w(E ′)∣. If ∣NM,w(E)∣ >
∣NM,w(E ′)∣, we have E ≺M,w E ′. If ∣NM,w(E)∣ = ∣NM,w(E ′)∣, the explainee then
compares the number of deduction steps in the explanations. Since Eb contains fewer
deduction steps than Ea, D(E) >D(E ′). So we have E ≺M,w E ′ as well.

Notice that Proposition 4.2 characterizes the conditions of skipping one step for mak-
ing explanations, and skipping n steps can be reduced to skipping one step for n times.
Both Proposition 4.1 and Proposition 4.2 highlight an intriguing point: it’s not always
beneficial for the explainer to provide more explanation, as the additional information
might not be understood by the explainee. If the explainer knows for sure that the ex-
plainee can understand some parts of the explanation, there is no need for the explainer
to elaborate further on those parts, as it could potentially cause more confusion for the
explainee. Having a preference over available explanations for a claim allows an agent
to select the one she prefers most.

Example 4. Fig. 1 shows explanation E/F can be combined with explanation ABD/E,
resulting in explanation ABD/E/F . Suppose the explainer knows that the explainee
can justify E as well as the deduction from E to F , namelyM,w ⊧ ◻1△2 (E ∧ (E →
F )), but the explainer is not sure whether the explainee can justify the deduction from
ABC to E. In this case, the number of hypotheses and deductions that the explainer is
not sure whether the explainee can justify in E/F is less than that of ABD/E/F , so
we have E/F ≻M,w ABD/E/F . Suppose the explainer knows that the explainee can
justify all the hypotheses and deductions in both explanations. The explainer then needs
to compare the numbers of deduction steps. As D(E/F ) < D(ABD/E/F ), we have
E/F ≻M,w ABD/E/F as well.

5 Conversational Explanations

The explainer has incomplete information about the explainee in terms of her justified
knowledge, but the explainer can gain more and more information through having feed-
back from the explainee on the explanations that have been announced. We first define
the explainee’s feedback. After the explainee hears an explanation, she can evaluate
whether she can understand the explanation. So her feedback is defined inductively as
a tree that is isomorphic to a given explanation so that each node in the feedback tree
corresponds to a specific formula in the explanation.

Definition 5.1 (Explainees’ Feedback). Given an explanation E , the explainee’s feed-
back on explanation E , denoted as F2(E), is inductively defined as follows:

F2(Λ1), . . . ,F2(Λn)
fB
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whereF2(Λi) = 1 if Λi is a formula ofLProp and the explainee can justify Λi;F2(Λi) =
0 if Λi is a formula of LProp and the explainee cannot justify Λi; fB = 1 if agent 2
understands E; otherwise, fB = 0. Given a formula F in E , we use F2(E , F ) to extract
the value in F2(E) that corresponds to the explainee’s feedback on F . We write F(E)
and F(E , F ) for short if the agent is clear from the context.

As we mentioned in the previous section, if the explainee cannot understand a de-
duction step, then she cannot understand all the follow-up deduction steps. Thus, if there
exists one node in F(E) that has value 0, all its follow-up nodes towards the root will
also have value 0. Given the way we define the explainee’s feedback, the explainer can
learn what the explainee can justify in the explanation or understand a sub-explanation
from the explainee’s feedback. We first define the update of an agent’s epistemic state
by a truth set (this is the usual definition for announcements [21]).

Definition 5.2 (Update by a Set of Worlds). Given a two-agent modular modelM, a
subset of worlds X , and an agent i, we defineM updated with (i,X) by

M∣(i,X) = (Agt,W ′, R̃′, ∗̃, π′)

as follows:

– W ′ =X;
– R̃′ = R̃ ∩ (X ×X);
– π′ = π ∩X .

We then define what the explainer can learn and interpret from the explainee’s feed-
back on a given explanation. When the explainee returns 1 for a hypothesis F , it simply
means that the explainee can justify F ; when the explainee returns 0 for a hypothesis F ,
it simply means that the explainee cannot justify F . By Definition 3.5 on understanding
an explanation, when the explainee returns 1 for a derived formula F , it means that
the explainee can understand the sub-explanation for F , which also means that the ex-
plainee can justify the hypotheses as well as the deduction steps in the sub-explanation;
when the explainee returns 0 for a derived formula F , it means that the explainee cannot
understand the sub-explanation for F , which also means that the explainee cannot jus-
tify all the hypotheses as well as the deduction steps in the sub-explanation. Moreover,
by Proposition 3.3, once the explainee understands a sub-explanation, she can then jus-
tify all the derived formulas in the sub-explanation after it is announced. Note that we
assume that the explainee’s feedback is truthful (otherwise it could happen that the up-
dated model does not contain the actual world anymore, in which case we would need
a truth definition similar to public announcement logic).

Definition 5.3 (Learning from Feedback). Given a two-agent modular modelM, the
update ofM with the explainer upon receiving the explainee’s feedback on the expla-
nation E , formallyM∣(1,F(E)), is defined by a series of updates: for each formula F
in E we updateM with (1, UF ) where UF is given by

1. if F ∈H(E) and F(E , F ) = 1, then

UF = {w ∈W ∣M,w ⊧△2F};
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2. if F ∈H(E) and F(E , F ) = 0, then

UF = {w ∈W ∣M,w ⊧ ¬△2 F};

3. if F ∈D(E) and F(E , F ) = 1, then

UF = {w ∈W ∣M,w ⊧△2( ⋀
A∈H(sub(E,F ))

A ∧ ⋀
B∈D(sub(E,F ))

Ô⇒
Pr(E,B)

B ∧B)};

4. if F ∈D(E) and F(E , F ) = 0, then

UF = {w ∈W ∣M,w ⊧ ¬△2 ( ⋀
A∈H(sub(E,F ))

A ∧ ⋀
B∈D(sub(E,F ))

Ô⇒
Pr(E,B)

B)};

5. otherwise, UF =W .

Even though the update is done in series, the order of the updates does not matter.
In other words, one could just do one update with the intersection of all UF ’s whose
conditions apply. The above definition gives rise to the following results.

Proposition 5.1. Given a two-agent modular modelM, the updated modelM∣(1,F(E))
with the explainer upon receiving the explainee’s feedback on the explanation E is still
a two-agent modular model.

Proof. The update approach defined in Definition 5.2 remove states from the system.
We first check whether the R relation in the updated model is still reflexive and transi-
tive. Suppose it is not reflexive any more, which means that there exists a world w ∈W ′

such that (w,w) /∈ R′i. However, since w ∈ W , it is also the case that (w,w) /∈ Ri,
making Ri not reflexive in the original model. Contradiction! Suppose it is not transi-
tive, which means that there exists worlds w1, w2 and w3 ∈W ′ such that (w1,w2) ∈ R′i
and (w2,w3) ∈ R′i, but (w1,w3) /∈ R′i. However, since worlds w1, w2 and w3 ∈ W , it
is also the case that (w1,w2) ∈ Ri and (w2,w3) ∈ Ri, but (w1,w3) /∈ Ri, making Ri

not transitive in the original model. Contradiction! Next, we check whether the updated
model still has validity JYK. As the update approach removes states from the model,
agents’ knowledge get expanded after update. So if agent i knows F in the original
model, it is still the case in the updated model. Suppose agent i uses t to justify F in
world w in the original model. By validity JYK, agent i also knows F in world w in the
original model. As announcements are always truthful, the updated model still contains
the actual world w. So in the updated model, it is still the case that agent i uses t to
justify F and knows F in world w.

We then extend our language LJ with new formulas of the form [j ∶ F(E)]F , read as
“F is true after agent j hears feedback F(E)”. We set

M,w ⊧ [j ∶ F(E)]F iff M∣(j,F(E)),w ⊧ F.

This formula allows to express agent j’s updated epistemic state after hearing feedback
on an explanation. The result from the update is quite straightforward. However, one
should notice that, the explainer knows that the explainee cannot justify a deduction
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step only when the explainee returns 1 for the premises but 0 for the derived formula.
This is because when agent 2 returns 0 for a derived formula as well as some of its
premises, the explainer cannot understand the sub-explanation for the derived formula
due to its premises or the deduction step in between, making the explainer not able to
tell whether the explainee can justify the deduction or not. In such a case, the explainer
will ignore the feedback with respect to this and all the follow-up deduction steps.

Proposition 5.2. Given a two-agent modular modelM and a world w, the explainer
hears feedback F(E) from the explainee on explanation E in world w, for any formula
F in E ,

– if F ∈H(E) and F(E , F ) = 1, then

M,w ⊧ [1 ∶ F(E)][2 ∶ E] ◻1 △2F

– if F ∈H(E) and F(E , F ) = 0, then

M,w ⊧ [1 ∶ F(E)][2 ∶ E] ◻1 ¬△2 F

– if F ∈D(E) and F(E , F ) = 1, then

M,w ⊧ [1 ∶ F(E)][2 ∶ E] ◻1 △2( Ô⇒
Pr(E,F )

F ).

– if F ∈ D(E), F(E , F ) = 0 and for any P ∈ Pr(E , F ) it is the case that F(E , F ) =
1, then

M,w ⊧ [1 ∶ F(E)][2 ∶ E] ◻1 ¬△2 ( Ô⇒
Pr(E,F )

F ).

Proof. If F ∈ H(E) and F(E , F ) = 1, then only worlds that satisfy △2F will be kept,
which results inM,w ⊧ [1 ∶ F(E)][2 ∶ E]◻1△2F . If F ∈H(E) andF(E , F ) = 0, then
only worlds that satisfy ¬ △2 F will be kept, which results inM,w ⊧ [1 ∶ F(E)][2 ∶
E] ◻1 ¬ △2 F . If F ∈ D(E) and F(E , F ) = 1, worlds where the explainee can justify
all the hypotheses and deductions in sub-explanation sub(E , F ) are kept, resulting in
M,w ⊧ [1 ∶ F(E)][2 ∶ E] ◻1 △2( Ô⇒

Pr(E,F )
F ). As for the final one, if F ∈ D(E),

F(E , F ) = 0 and for any P ∈ Pr(E , F ) it is the case that F(E , F ) = 1, then worlds that
satisfy ¬△2 (⋀A∈H(sub(E,F ))A ∧⋀B∈D(sub(E,F )) Ô⇒

Pr(E,B)
B) are kept. Notice that

¬△2 ( ⋀
A∈H(sub(E,F ))

A ∧ ⋀
B∈D(sub(E,F ))

Ô⇒
Pr(E,B)

B)

is equivalent to

⋁
A∈H(sub(E,F ))

¬△2 A ∨ ⋁
B∈D(sub(E,F ))

¬△2 Ô⇒
Pr(E,B)

B).

Since for any P ∈ Pr(E , F )we haveF(E , F ) = 1, the disjuncts⋁A∈H(sub(E,F )) ¬△2A
as well as⋁B∈D(sub(E,F ))/F ¬△2 Ô⇒

Pr(E,B)
B) can be eliminated. Thus, it is the case that

M,w ⊧ [1 ∶ F(E)][2 ∶ E] ◻1 ¬△2 ( Ô⇒
Pr(E,F )

F ).
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Using the background information about the explainee, the explainer can further
explain what the explainee cannot justify. However, agent 1 should always remember
that its goal is to answer the initial question from the explainee instead of infinitely
explaining what the explainee cannot justify in the previous explanation. All of these
require the explainer to memorize the conversation with the explainee. We first define
the notion of conversation histories between two agents, which always starts with a
question and is followed by an explanation from the explainer and feedback from the
explainee in an alternating way.

Definition 5.4 (Conversation Histories). A finite conversation history between the ex-
plainer and the explainee for explaining a propositional formula F is of the form

η = (1 ∶?F )(2 ∶ E1)(1 ∶ F(E1))⋯(2 ∶ En)(1 ∶ F(En)),

where E1⋯En are explanations made by the explainer to the explainee. We use

pre(η, k) = (1 ∶?F )(2 ∶ E1)(1 ∶ F(E1))⋯(2 ∶ Ek)(1 ∶ F(Ek))

to denote the prefix of η up to the kth position.

Given a conversation history, the explainer can decide the explanation to be announced.
The decision-making is formalized as a function E∗(η) that takes a conservation history
as an input. The explainer needs to evaluate whether it is more worthy to further explain
what the explainee cannot justify in the previous explanation, or find another way to
explain the initial question, given the current information about the explainee. Let us
first use why(F(E)) to denote the set of formulas that are supposed to have further
explanation given feedback F(E).

why(F(E)) = {P ∈ E ∣ F(E , P ) = 0 and
(P ∈H(E) or F(E ,G) = 1 for all G ∈ Pr(E , P )).}

The set why(F(E)) contains formulas in explanation E on which the explainee asks for
further explanations and that are either hypotheses or derived formula whose premises
are justified by the explainee. The rest of the unjustified formulas explanation E should
not be explained, because it is not clear whether the explainee cannot justify their
premises or deductions. As we mentioned before, the explainer’s goal is to answer the
initial question from the explainee. Thus, when looking for the most preferred expla-
nations, the explainer should not only consider the explanations for the questions that
were asked right now, but also the explanations for the initial question.

Definition 5.5 (Most Preferred Explanations). Assume that we are given a two-agent
modular modelM, a world w, and a conversation history

η = (1 ∶?F )(2 ∶ E1)(1 ∶ F(E1))⋯(2 ∶ En)(1 ∶ F(En)).
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The set of the most preferred explanations with respect to η is given by a function E∗(η),
which is defined as follows.

M′ ∶=M∣(2 ∶ E1)∣(1 ∶ F(E1))∣⋯∣(2 ∶ En)∣(1 ∶ F(En))
X ∶= λM

′,w(∅, F ) ∪ ⋃
G∈why(F(2,En))

λM
′,w(Pr(En,G),G)

E∗(η) ∶= {E ∈X ∣ for any E ′ ∈X it is the case that E ′ ≾M
′,w E}

In words, given a conversation history η, the explainer evaluates explanations from
the set λM

′,w(F ), which is the set of available explanations for the initial question
regarding F , and ⋃G∈why(F(En)) λ

M
′,w(Pr(En,G),G), which is the set of available

explanations for further explaining what the explainee cannot undFerstand in En, and
chooses the one that is most preferred based on the principles in Definition 4.2. For
example, if agent 1 finds that it is too time-consuming to make agent 2 understand En,
because any further explanations contain too many deduction steps, then the explainer
might prefer explaining the claim F in another simple way, if there exists one. It is
also important to stress that the evaluation is made with respect to modelM′ =M∣(2 ∶
E1)∣(1 ∶ F(E1))∣⋯∣(2 ∶ En)∣(1 ∶ F(En)), which means that the explainer considers the
latest information about the explainee that she can infer from conversation η.

Since explanations are conducted conversationally, it is of great importance for the
conversation to terminate. The conversation can terminate due to two reasons: either
the explainee has justified the initial claim and thus does not ask any more questions,
or the explainer cannot explain more. For sure, we would like the first one to occur.
The following proposition expresses that our explanation approach ensures this desired
property if there exists an explanation that the explainee understands and the explainer
is aware of, and the explanation can be constructed through a series of replacement
operations over the announced explanations in the conversation history.

Theorem 5.1. Given a two-agent modular modelM and a world w, if there exists an
explanation E such that claim(E) = F , the explainee understands E and the explainer
is aware of E in world w, then there exists a conversation history

η = (1 ∶?F )(2 ∶ E1)(1 ∶ F(E1))⋯(2 ∶ En)(1 ∶ F(En)),

where Ei ∈ E∗(pre(η, i − 1)), such that

1. M,w ⊧ [2 ∶ En]⋯[1 ∶ F(E1)][2 ∶ E1]JtK2F , where t ∈ Gt is a derived term that
the explainee constructs with respect to E;

2. if n = 1, E = E1; if n > 1, E = E1[E2]⋯[En];
3. all the nodes in F(En) have value 1.

Proof. 1. We first regard all the explanations that the explainer is aware of for the
claim F as a tree that is rooted at F , denoted as TF . Every time the explainee
provides feedback to the explainer’s previous explanation, the explainer can have
more information about agent 2 (the formulas and deductions that the explainee can
justify). With this information, agent 2 can remove certain formulas and deductions
between formulas from TF so that the explanations containing formulas and deduc-
tions that the explainee cannot justify are no longer available for the explainer to
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the explainee. Since the explainee’s feedback is always truthful, the explainer will
not remove formulas and deductions that the explainee can justify from TF . Thus,
if there exists an explanation E with claim(E) = F , the explainee understands E
and the explainer is aware of E , then E will always stay in TF . Using the approach
defined in Definition 5.5 allows the explainer to look back at the explanations with
claim(E) = F in each round of explanation selection. Recall that we have con-
straints on the evidence function: terms that can be used to justify a formula F are
finite, and the formulas that a given term can justify are finite. These two constraints
ensure that a formula F has finitely many explanations (if there exists). As E will
always stay in TF , and the explanations that can be used to justify F are finite,
E will be found by the explainer at some point. Once the explainee constructs or
hears E that she can understand, she can justify F with a ground term t. Therefore,
if there exists an explanation E with claim(E) = F , the explainee understands E
and the explainer is aware of E , there exists η such that after η the explainee can
justify F .

2. If n = 1, E = E1 trivially holds. The following will prove E = E1[E2]⋯[En] for
n > 1. The explanation that the explainer chooses to announce is either to fur-
ther explain what the explainee cannot justify in the previous explanation, or to
explain F in a completely different way. The above has proved that E can be
found by the explainee. If E = En, then En completely replaces the explanation
that has been built previously, i.e., there exists m with 1 ≤ m < n such that
E = Em[Em+1]⋯[En−1][En], where Em has claim F and is also constructed in
the previous steps. If E /= En, then E is built together with previous steps, i.e., there
exists m with 1 ≤ m ≤ n such that E = Em[Em+1]⋯[En], where Em has claim
F and is also constructed in the previous steps. As η is finite, the above back-
ward reasoning will eventually reach E1. Hence, given the conversation history η,
E = E1[E2]⋯[En].

3. As E is constructed through [Ei], En is part of E or equal to E . If some of the nodes
in F(En) have value 0, which means that the explainee has questions about En,
then the explainee cannot construct a ground derived term for F with respect to
E due to her learning approach in Definition 3.4, which contradicts the previous
conclusion. So all of the nodes in F(En) have value 1.

Example 5. We illustrate our approach using the example that was mentioned in the in-
troduction. A user u asks a chatbot c why she should drink more water. Assume that the
chatbot has no information about the user except the user being sick. She thereby an-
nounces explanation E to the user, which is ”being sick can lead to fluid loss, so drinking
more water helps replenish these losses”, formalized as E = sick/fluid loss/drink water.
However, the user replies to the chatbot with F(E) = 1/0/0, making the chatbot knows
that the user can justify that she is sick but cannot justify the deduction from sick to
fluid loss,

M,w ⊧ [c ∶ F(E)][u ∶ E] ◻c △usick,

M,w ⊧ [c ∶ F(E)][u ∶ E] ◻c ¬△u (sick → fluid loss).

These express the chatbot’s knowledge about the user’s background after the chatbot
hears her user’s feedback F(E). Next, the chatbot needs to decide what to explain.
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Regarding E , the chatbot can further explain why being sick can lead to fluid loss,
namely why(F(E)) = {fluid loss}. Besides, the chatbot can also explain why to
drink more water when being sick in another way. Suppose the chatbot recognizes that
given her knowledge about the user’s background it is too complicated to explain why
being sick can lead to fluid loss, namely E ′ = sick/⋯/fluid loss, but she can simply
tell the user that being sick can make you thirsty, so you should drink more water,
formalized as E ′′ = sick/thirsty/drink water. Given the conversation history

η = (c ∶?drink water)(u ∶ E)(c ∶ F(E)),

the chatbot knows that the user can justify the deduction from sick to thirsty and from
thirsty to drink water in E ′′. Using the criteria in Definition 4.2, the chatbot specifies
the preference over E ′ and E ′′, and gets E ′ ≺M′,w E ′′, where M′ = M∣(u ∶ E)∣(c ∶
F(E)). Thus, the chatbot announces E ′′ to the user. Since the chatbot’s knowledge
about the user is always true, the user can justify all parts in E ′′ and thus understand E ′′.
More precisely, assume that t, s, r ∈ Gt, and

M,w ⊧ [c ∶ F(E)][u ∶ E]JtKusick,
M,w ⊧ [c ∶ F(E)][u ∶ E]JsKu(sick → thirsty),
M,w ⊧ [c ∶ F(E)][u ∶ E]JrKu(thirsty → drink water).

The user then constructs term s ⋅ t for thirsty and term r ⋅ (s ⋅ t) for drink water with
respect to E ′′, and gains more justified knowledge accordingly after hearing E ′′,

M,w ⊧ [u ∶ E ′′][c ∶ F(E)][u ∶ E]Js ⋅ tKuthirsty,
M,w ⊧ [u ∶ E ′′][c ∶ F(E)][u ∶ E]Jr ⋅ (s ⋅ t)Kudrink water.

Therefore, the user’s feedback on E ′′ is F(E ′′) = 1/1/1. After the chatbot hears this
feedback, the conversation terminates.

6 Related Work

Within philosophy and psychology, there has been a lot of debate about what an expla-
nation is, but accounts of explanation are commonly associated with causality [9,23,31].
Miller argues in her seminal paper that explanation can be defined as two processes and
one product [19]. Explanation is a process of abductive inference for ‘filling the gaps’
between a given event and the causes for the event. In this paper, agents might not be
able to derive all the logical consequences of their justified knowledge, and explanation
helps to derive the missing parts. The explanation that results from the above abduc-
tive inference process is the product of the cognitive explanation process. Explanation
is also a process of transferring knowledge between explainer and explainee, in which
the goal is that the explainee has enough information to understand the causes of the
event. This social aspect of explanation allows us to use the conversational approach
to provide personalized explanations. In philosophy, Carl Hempel articulated the first
theory of explanation. Hempel claimed that there are two types of explanation, what she
called ’deductive-nomological’ (DN) and ’inductive-statistical’ (IS) respectively [10].
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For Hempel, DN explanations were always to be preferred to IS explanations, because
she understood the concept of explanation as a purely logical concept, i.e., there is a log-
ical relationship between premises and conclusion in explanation, which is consistent
with the way we define explanation.

Although there is a solid psychological and philosophical background of explana-
tion, formal accounts of explanation have just been proposed largely in the guise of
so-called Explainable AI. Shvo et al. achieve that in terms of the knowledge of agents
and the mechanism by which agents revise their knowledge given possible explanations
[25]. Vasileiou et al. define the notion of logic-based explanations in the context of
model reconciliation problems [28].

In the area of logic, we find the logic of knowing why that has been introduced
by Xu et al. [32]. They extend the language of epistemic logic with new modalities to
express agent i knows why φ. These modalities are part of Wang’s project [29] of de-
veloping a new generation of epistemic logics that go beyond knowing that. The logic
of knowing why has been extended by public announcement operators for announcing
formulas and also for announcing reasons [20]. Based on the logic of knowing why,
Wei [30] presents a logic of understanding why that is based on two types of explana-
tions: whereas knowing why requires knowing horizontal explanations, understanding
why additionally requires vertical explanations. In philosophy, grounding is considered
to be a form of metaphysical explanation. For example, the existence of sets members
is thought to explain the existence of sets. The most influential logic of ground is the
weak ground Kit Fine develops [7], and Adam Lovett then did follow-up research by
proposing a logic of strict ground [17]. An explanation can also be expressed in the
form ”A because B”, and Benjamin Schnieder develops a logic for ‘because’ based on
systematic connections between ‘because’ and the truth-functional connectives [24].

7 Conclusion

It is important for our AI systems to provide personalized explanations to users that
are relevant to them and align with their background knowledge. A conversation be-
tween explainers and explainees not only allows explainers to obtain the explainees’
background but also allows explainers to tailor their explanations so that explainees
can better understand the explanations. In this paper, we have proposed an approach
that allows an explainer to tailor and communicate personalized explanations to an ex-
plainee through having consecutive conversations with the explainee. It is built on the
idea that the explainee understands an explanation if and only if she can justify all for-
mulas in the explanation. In a conversation for explanations, the explainee provides her
feedback on the explanation that has just been announced, while the explainer inter-
prets the explainee’s background from the feedback and then selects an explanation for
announcement given what has learned about the explainee. We have proved that the con-
versation will terminate due to the explainee’s justification of the initial claim as long
as there exists an explanation for the initial claim that the explainee understands and the
explainer is aware of. In the future, we would like to extend our approach with another
dimension for evaluating explanations: the acceptance of explanations. The explanation
that is selected by the explainer should be not only understood, but also accepted, by
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the explainee. For example, a policeman does not accept an explanation for over-speed
driving due to heading for a party. For this part of study, our framework needs to be en-
riched with evaluation standards such as values and personal norms. Moreover, we can
also study personalized explanations from the nonmonotonic perspective. Our modal
can deal with cases where there is disagreement among the agents about deductions: an
agent perceives exceptions from a deduction made by another agent, hence requiring
argumentation between the agents. Another direction for future research can be to pro-
vide axiomatization for our model, which should characterize the two updates of both
agents learning from explanations and learning from feedback apart from justification
logic and modal logic in S4.
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