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You may say, “I know that Abraham Lincoln was a tall man.
” In turn you
may be asked how you know. You would almost
 certainly not reply
semantically, Hintikka-style, that Abraham Lincoln
 was tall in all
situations compatible with your knowledge. Instead you
would more likely
say, “I read about Abraham Lincoln’s
height in several books, and I have
seen photographs of him next to
other people. ” One certifies knowledge
by providing a reason, a
 justification. Hintikka semantics captures
knowledge as true belief.
 Justification logics supply the missing third
component of
Plato’s characterization of knowledge as justified true
belief.
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1. Why Justification Logic?

Justification logics are epistemic logics which allow knowledge and
belief
modalities to be ‘unfolded’ into justification
 terms: instead of  one
writes , and reads it
as “  is justified by reason ”. One may think of
traditional modal operators as implicit modalities, and
 justification terms
as their explicit elaborations which
 supplement modal logics with finer-
grained epistemic machinery. The
 family of justification terms has
structure and operations. Choice of
 operations gives rise to different
justification logics. For all
common epistemic logics their modalities can
be completely unfolded
 into explicit justification form. In this respect
Justification Logic
 reveals and uses the explicit, but hidden, content of
traditional
Epistemic Modal Logic.

Justification logic originated as part of a successful project to
 provide a
constructive semantics for intuitionistic
 logic—justification terms

□X

t : X X t

Justification Logic

2 Stanford Encyclopedia of Philosophy

abstracted away all but the most basic
 features of mathematical proofs.
Proofs are justifications in perhaps
 their purest form. Subsequently
justification logics were introduced
into formal epistemology. This article
presents the general range of
justification logics as currently understood. It
discusses their
relationships with conventional modal logics. In addition to
technical
machinery, the article examines in what way the use of explicit
justification terms sheds light on a number of traditional
 philosophical
problems. The subject as a whole is still under active
development.

The roots of justification logic can be traced back to many different
sources, two of which are discussed in detail: epistemology and
mathematical logic.

1.1 Epistemic Tradition

The properties of knowledge and belief have been a subject for formal
logic at least since von Wright and Hintikka, (Hintikka 1962, von
Wright
1951). Knowledge and belief are both treated as modalities in a
way that is
now very familiar—Epistemic Logic. But of
 Plato’s three criteria for
knowledge, justified, true,
 belief, (Gettier 1963, Hendricks 2005),
epistemic logic really
works with only two of them. Possible worlds and
indistinguishability
 model belief—one believes what is so under all
circumstances
 thought possible. Factivity brings a trueness component
into
play—if something is not so in the actual world it cannot be
known,
only believed. But there is no representation for the
justification condition.
Nonetheless, the modal approach has been
 remarkably successful in
permitting the development of a rich
 mathematical theory and
applications, (Fagin, Halpern, Moses, and
Vardi 1995, van Ditmarsch, van
der Hoek, and Kooi 2007). Still, it is
not the whole picture.

The modal approach to the logic of knowledge is, in a sense, built
around
the universal quantifier:  is known in a situation if
  is true in allX X
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situations indistinguishable from that
one. Justifications, on the other hand,
bring an existential
quantifier into the picture:  is known in a situation if
there exists a justification for  in that situation.
This universal/existential
dichotomy is a familiar one to
 logicians—in formal logics there exists a
proof for a formula
  if and only if  is true in all models for the logic.
One
 thinks of models as inherently non-constructive, and proofs as
constructive things. One will not go far wrong in thinking of
justifications
in general as much like mathematical proofs. Indeed,
the first justification
logic was explicitly designed to capture
mathematical proofs in arithmetic,
something which will be discussed
further in Section 1.2.

In Justification Logic, in addition to the category of formulas, there
 is a
second category of justifications. Justifications are
 formal terms, built up
from constants and variables using various
operation symbols. Constants
represent justifications for commonly
 accepted truths—typically axioms.
Variables denote unspecified
 justifications. Different justification logics
differ on which
operations are allowed (and also in other ways too). If  is
a
justification term and  is a formula,  is a formula, and
is intended
to be read:

 is a justification for X.

One operation, common to all justification logics, is
application, written
like multiplication. The idea is, if
  is a justification for  and  is a
justification for , then [ ] is a justification for
 [1].
 That is, the
validity of the following is generally assumed:

This is the explicit version of the usual distributivity of knowledge
operators, and modal operators generally, across implication:

X

X

X X

t

X t : X

t

s A → B t

A s ⋅ t B

s : (A → B) → (t : A → [s ⋅ t] : B).(1)

□(A → B) → (□A → □B).(2)

Justification Logic
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In fact, formula (2) is behind many of the problems of logical
omniscience. It asserts that an agent knows everything that is
 implied by
the agent’s knowledge—knowledge is closed under
 consequence. While
knowable-in-principle, knowability, is closed under
consequence, the same
cannot be said for any plausible version of
 actual knowledge. The
distinction between (1) and (2) can be exploited
 in a discussion of the
paradigmatic Red Barn Example of Goldman and
 Kripke; here is a
simplified version of the story taken from (Dretske
2005).

In the first formalization of the Red Barn Example, logical derivation
will
be performed in a basic modal logic in which  is
 interpreted as the
‘belief’ modality. Then some of the
occurrences of  will be externally
interpreted as
‘knowledge’ according to the problem’s description.
Let 
be the sentence ‘the object in front of me is a
 barn’, and let  be the
sentence ‘the object in front
of me is red’.

1. , ‘I believe that the object in front of me is a
barn’;
2. , ‘I believe that the object in front
of me is a red barn’.

At the metalevel, 2 is actually knowledge, whereas by the problem
description, 1 is not knowledge.

3. , a knowledge assertion of a
logical axiom.

Suppose I am driving through a neighborhood in which,
unbeknownst to
 me, papier-mâché barns are scattered, and I see
that the
object in front of me is a barn. Because I have barn-before-
me
percepts, I believe that the object in front of me is a barn. Our
intuitions suggest that I fail to know barn. But now suppose that
the
neighborhood has no fake red barns, and I also notice that the
object
 in front of me is red, so I know a red barn is there. This
juxtaposition, being a red barn, which I know, entails there being a
barn, which I do not, “is an embarrassment”.

□

□

B

R

□B

□(B ∧ R)

□(B ∧ R → B)
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Within this formalization, it appears that epistemic closure in its
 modal
form (2) is violated: line 2, , and line
 3,  are
cases of knowledge whereas
  (line 1) is not knowledge. The modal
language here does not
seem to help resolving this issue.

Next consider the Red Barn Example in Justification Logic where  is
interpreted as ‘I believe  for
 reason ’. Let  be a specific individual
justification
for belief that , and , for belief that . In
addition, let 

 be a justification for the logical truth . Then the list of
assumptions is:

1. , ‘  is a reason to believe that the object in
 front of me is a
barn’;

2. , ‘  is a reason to believe that
the object in front of me is
a red barn’;

3. .

On the metalevel, the problem description states that 2 and 3 are
cases of
knowledge, and not merely belief, whereas 1 is belief which
 is not
knowledge. Here is how the formal reasoning goes:

4. , by principle (1);
5. , from 3 and 4,
by propositional logic;
6. [ , from 2 and 5, by propositional logic.

Notice that conclusion 6 is [ , and not  ;
 epistemic closure
holds. By reasoning in justification logic it was
concluded that [
is a case of knowledge, i.e.,
 ‘I know  for reason ’. The fact that 

 is not a case of knowledge does not spoil the closure principle,
since
the latter claims knowledge specifically for [ .
 Hence after
observing a red façade, I indeed know , but
this knowledge has nothing
to do with 1, which remains a case of
belief rather than of knowledge. The
justification logic formalization
represents the situation fairly.

□(B ∧ R) □(B ∧ R → B)

□B

t : F

F t u

B v B ∧ R

a B ∧ R → B

u : B u

v : (B ∧ R) v

a : (B ∧ R → B)

a : (B ∧ R → B) → (v : (B ∧ R) → [a ⋅ v] : B)

v : (B ∧ R) → [a ⋅ v] : B

a ⋅ v] : B

a ⋅ v] : B u : B

a ⋅ v] : B

B a ⋅ v

u : B

a ⋅ v] : B

B

Justification Logic
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Tracking justifications represents the structure of the Red Barn
Example in
a way that is not captured by traditional epistemic modal
 tools. The
Justification Logic formalization models what seems to be
 happening in
such a case; closure of knowledge under logical
entailment is maintained
even though ‘barn’ is not
perceptually
known.[2]

1.2 Mathematical Logic Tradition

According to Brouwer, truth in constructive (intuitionistic)
 mathematics
means the existence of a proof, cf. (Troelstra and van
 Dalen 1988). In
1931–34, Heyting and Kolmogorov gave an informal
 description of the
intended proof-based semantics for intuitionistic
logic (Kolmogorov 1932,
Heyting 1934), which is now referred to as the
 Brouwer-Heyting-
Kolmogorov (BHK) semantics. According to the
 BHK conditions, a
formula is ‘true’ if it has a proof.
 Furthermore, a proof of a compound
statement is connected to proofs of
its components in the following way:

a proof of  consists of a proof of proposition
  and a proof of
proposition ;
a proof of  is given by presenting either a proof of
  or a proof
of ;
a proof of  is a construction transforming
proofs of  into
proofs of ;
falsehood  is a proposition which has no proof,  is shorthand for 

 .

Kolmogorov explicitly suggested that the proof-like objects in his
interpretation (“problem solutions”) came from classical
 mathematics
(Kolmogorov 1932). Indeed, from a foundational point of
view it does not
make much sense to understand the
 ‘proofs’ above as proofs in an
intuitionistic system which
these conditions are supposed to be specifying.

A ∧ B A

B

A ∨ B A

B

A → B A

B

⊥ ¬A

A → ⊥

Sergei Artemov, Melvin Fitting, and Thomas Studer
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The fundamental value of the BHK semantics is that informally but
unambiguously it suggests treating justifications, here mathematical
proofs, as objects with operations.

In (Gödel 1933), Gödel took the first step towards
developing a rigorous
proof-based semantics for intuitionism.
 Gödel considered the classical
modal logic  to be
a calculus describing properties of provability:

Axioms and rules of classical propositional logic;
;

;
;

Rule of necessitation: if , then .

Based on Brouwer’s understanding of logical truth as
provability, Gödel
defined a translation tr  of the
 propositional formula  in the
intuitionistic language into the
language of classical modal logic: tr  is
obtained by prefixing
every subformula of  with the provability modality

.
Informally speaking, when the usual procedure of determining classical
truth of a formula is applied to tr , it will test the
provability (not the
truth) of each of ’s subformulas, in
 agreement with Brouwer’s ideas.
From Gödel’s results
 and the McKinsey-Tarski work on topological
semantics for modal logic,
it follows that the translation tr  provides a
proper embedding
 of the Intuitionistic Propositional Calculus, , into


, i.e., an embedding of intuitionistic logic into
classical logic extended
by the provability operator.

Still, Gödel’s original goal of defining intuitionistic
 logic in terms of
classical provability was not reached, since the
 connection of  to the
usual mathematical notion of
 provability was not established. Moreover,
Gödel noted that the
straightforward idea of interpreting modality  as

S4

□(F → G) → (□F → □G)

□F → F

□F → □□F

⊢ F ⊢ □F

(F) F

(F)

F

□

(F)

F

(F)

IPC

S4

If IPC proves F ,  then S4 proves tr(F).(3)

S4

□F

Justification Logic

8 Stanford Encyclopedia of Philosophy

F is
 provable in a given formal system T contradicted
 Gödel’s second
incompleteness theorem. Indeed,  can be derived in  by
the rule
 of necessitation from the axiom . On the other
 hand,
interpreting modality  as the predicate of formal
provability in theory 
and  as contradiction, converts this
formula into a false statement that the
consistency of  is
internally provable in .

The situation after (Gödel 1933) can be described by the
following figure
where ‘ ’ should be
read as ‘  is interpreted in ’

In a public lecture in Vienna in 1938, Gödel observed that using
the format
of explicit proofs:

can help in interpreting his provability calculus 
 (Gödel 1938).
Unfortunately, Gödel’s work (Gödel
 1938) remained unpublished until
1995, by which time the Gödelian
 logic of explicit proofs had already
been rediscovered, and
 axiomatized as the Logic of Proofs  and
supplied with
 completeness theorems connecting it to both  and
classical proofs (Artemov 1995).

The Logic of Proofs  became the first in the
Justification Logic family.
Proof terms in  are nothing
 but BHK terms understood as classical
proofs. With ,
 propositional intuitionistic logic received the desired
rigorous BHK
semantics:

For further discussion of the mathematical logic tradition, see the
Section
1 of the supplementary document
Some More Technical Matters.

□(□F → F) S4

□F → F

□ T

F

T T

X ↪ Y X Y

IPC↪ S4↪? ↪ CLASSICAL PROOFS

t is a proof of F .(4)

S4

LP

S4

LP

LP

LP

IPC↪ S4↪ LP↪ CLASSICAL PROOFS

Sergei Artemov, Melvin Fitting, and Thomas Studer
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1.3 Hyperintensionality

The hyperintensional paradox was formulated by Cresswell in
1975.

Starting with Cresswell himself, several ways of dealing with this
 have
been proposed. Generally these involve adding more layers to
 familiar
possible world approaches so that some way of distinguishing
 between
logically equivalent sentences is available. Cresswell
 suggested that the
syntactic form of sentences be taken into account.
 Justification Logic, in
effect, takes sentence form into account
 through its mechanism for
handling justifications for sentences. Thus
 Justification Logic addresses
some of the central issues of
 hyperintensionality and, as a bonus, we
automatically have an
appropriate proof theory, model theory, complexity
estimates and a
broad variety of applications.

A good example of a hyperintensional context is the informal language
used by mathematicians conversing with each other. Typically when a
mathematician says he or she knows something, the understanding is
that a
proof is at hand. But as the following illustrates, this kind
of knowledge is
essentially hyperintensional.

It is well known that it seems possible to have a situation in which
there are two propositions  and  which are logically
equivalent
and yet are such that a person may believe the one but not
 the
other. If we regard a proposition as a set of possible worlds then
two logically equivalent propositions will be identical, and so if
‘
believes that’ is a genuine sentential functor, the
 situation
described in the opening sentence could not arise. I call
 this the
paradox of hyperintensional contexts. Hyperintensional
 contexts
are simply contexts which do not respect logical
equivalence.

p q

x

Fermat’s Last Theorem, FLT, is logically equivalent to 
since
both are provable, and hence denote the same proposition.

0 = 0

Justification Logic
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To formalize mathematical speech the justification logic
  is a natural
choice since  was designed to
have characteristics of “  is a proof of


.”

The fact that propositions  and  are equivalent in
 , , does
not warrant the
 equivalence of the corresponding justification assertions
and
typically  and  are not equivalent,
 .

Going further , and Justification Logic in general,
 is not only
sufficiently refined to distinguish justification
 assertions for logically
equivalent sentences, it provides a flexible
 machinery to connect
justifications of equivalent sentences and hence
 to maintain constructive
closure properties necessary for a quality
logic system. For example, let 
and  be provably equivalent,
 i.e., there is a proof  of , and so


 is provable in . Suppose
also that  is a proof of , and so 
. It has already
been mentioned that this does not mean  is a proof of


—this is a hyperintensional context. However within the
framework of
Justification Logic, building on the proofs of  and
of , we can
construct a proof term
  which represents the proof of  and so 


 is provable. In this respect, Justification Logic goes beyond
Cresswell’s expectations: logically equivalent sentences display
 different
but constructively controlled epistemic behavior.

2. The Basic Components of Justification Logic

In this section the syntax and axiomatics of the most common systems
of
justification logic are presented.

However, the context of proofs distinguishes them immediately: a
proof
  of  is not necessarily a proof of FLT, and vice
versa.t 0 = 0

LP

t:X t

X

X Y LP X ↔ Y

t:X t:Y t:X ↮ t:Y

LP

X

Y u X ↔ Y

u:(X ↔ Y ) LP v X

v:X v

Y

X X ↔ Y

f(u, v) Y

f(u, v):Y

Sergei Artemov, Melvin Fitting, and Thomas Studer
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2.1 The Language of Justification Logic

In order to build a formal account of justification logics one must
make a
basic structural assumption: justifications are abstract
objects which have
structure and operations on them. A good
 example of justifications is
provided by formal proofs, which have
 long been objects of study in
mathematical logic and computer science
(cf. Section 1.2).

Justification Logic is a formal logical framework which incorporates
epistemic assertions , standing for ‘  is a
 justification for ’.
Justification Logic does not directly
analyze what it means for  to justify 

 beyond the format , but rather attempts to characterize this relation
axiomatically. This is similar to the way Boolean logic treats its
connectives, say, disjunction: it does not analyze the formula  but
rather assumes certain logical axioms and truth tables
about this formula.

There are several design decisions made. Justification Logic starts
with the
simplest base: classical Boolean logic, and for good
reasons. Justifications
provide a sufficiently serious challenge on
 even the simplest level. The
paradigmatic examples by Russell,
 Goldman-Kripke, Gettier and others,
can be handled with Boolean
 Justification Logic. The core of Epistemic
Logic consists of modal
systems with a classical Boolean base (K, T,
K4,
S4, K45, KD45, S5, etc.), and each of them has been
 provided with a
corresponding Justification Logic companion based on
 Boolean logic.
Finally, factivity of justifications is not always
 assumed. This makes it
possible to capture the essence of discussions
 in epistemology involving
matters of belief and not knowledge.

The basic operation on justifications is application. The
 application
operation takes justifications  and 
and produces a justification  such
that if  and , then [ .
Symbolically,

t : F t F

t

F t : F

p ∨ q

s t s ⋅ t

s : (F → G) t : F s ⋅ t] : G

s : (F → G) → (t : F → [s ⋅ t] : G)

Justification Logic

12 Stanford Encyclopedia of Philosophy

This is a basic property of justifications assumed in combinatory
logic and 
-calculi (Troelstra and Schwichtenberg
 1996), Brouwer-Heyting-

Kolmogorov semantics (Troelstra and van Dalen
 1988), Kleene
realizability (Kleene 1945), the Logic of Proofs
 , etc.

Another common operation on justifications is sum: it has been
introduced
to make explicit the modal logic reasoning (Artemov 1995).
 However,
some meaningful justification logics like
  (Artemov and Fitting 2019)
or
  (Faroldi, Ghari, Lehmann, and Studer 2024) do
 not use the
operation sum. With sum, any two justifications can safely
be combined
into something with broader scope. If , then
whatever evidence  may
be, the combined evidence  + 
 remains a justification for . More
properly, the operation
‘+’ takes justifications  and  and produces
  + ,
which is a justification for everything justified by
  or by .

As motivation, one might think of  and  as two volumes of an
encyclopedia, and  +  as the set of those two volumes.
Imagine that one
of the volumes, say , contains a sufficient
justification for a proposition 
, i.e.,  is the case.
Then the larger set  +  also contains a sufficient
justification for , [  + . In the Logic of Proofs
 , Section 1.2, ‘

’ can be
interpreted as a concatenation of proofs  and .

2.2 Basic Justification Logic 

Justification terms are built from justification variables , … and
justification constants , …
 (with indices  = 1, 2, 3, … which are
omitted whenever it
is safe) by means of the operations ‘  ’ and
‘+’. More
elaborate logics considered below also allow
 additional operations on
justifications. Constants denote atomic
 justifications which the system
does not analyze; variables denote
 unspecified justifications. The Basic
Logic of Justifications,
  is axiomatized by the following.

λ

LP

J−

JNoC−

s : F t

s t F

s t s t

s t

s : F → [s + t] : F  and t : F → [s + t] : F

s t

s t

s F

s : F s t

F s t] : F LP

s + t s t

J0

x, y, z

a, b, c i

⋅

J0

Sergei Artemov, Melvin Fitting, and Thomas Studer
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Classical Logic
Classical propositional axioms and the rule Modus
Ponens

Application Axiom
,

Sum Axioms
 +  + .

 is the logic of general (not necessarily factive)
 justifications for an
absolutely skeptical agent for whom no formula
is provably justified, i.e., 

 does not derive  for any  and . Such an agent is, however,
capable of
drawing relative justification conclusions of the form

With this capacity  is able to adequately emulate
 many other
Justification Logic systems in its language.

2.3 Logical Awareness and Constant Specifications

The Logical Awareness principle states that logical axioms
are justified ex
officio: an agent accepts logical axioms as
 justified (including the ones
concerning justifications). As just
 stated, Logical Awareness may be too
strong in some epistemic
situations. However Justification Logic offers the
flexible mechanism
of Constant Specifications to represent varying shades
of Logical
Awareness.

Of course one distinguishes between an assumption and a justified
assumption. In Justification Logic constants are used to represent
justifications of assumptions in situations where they are not
analyzed any
further. Suppose it is desired to postulate that an axiom
  is justified for
the knower. One simply postulates 
 for some evidence constant 
(with index 1). If, furthermore,
 it is desired to postulate that this new
principle  is
 also justified, one can postulate  for a

s : (F → G) → (t : F → [s ⋅ t] : G)

s : F → [s t] : F , s : F → [t s] : F

J0

J0 t : F t F

If x : A, y : B,… , z : C hold, then t : F .

J0

A

e1 : A e1

e1 : A e2 : (e1 : A)

Justification Logic
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constant  (with index 2). And so on. Keeping track of indices
 is not
necessary, but it is easy and helps in decision procedures
(Kuznets 2008).
The set of all assumptions of this kind for a given
 logic is called a
Constant Specification. Here is the formal
definition:

A Constant Specification  for a given
justification logic  is a set
of formulas of the
form

where  is an axiom of , and  are similar constants
with indices 1, 2, …,
 . It is assumed that  contains all
intermediate
specifications, i.e., whenever 
is in 

, then  is in ,
too.

There are a number of special conditions that have been placed on
constant specifications in the literature. The following are the most
common.

Empty
 . This corresponds to an absolutely skeptical
 agent. It

amounts to working with the logic .
Finite

 is a finite set of formulas. This is a fully representative
case,
since any specific derivation in Justification Logic will
 involve
only a finite set of constants.

Axiomatically Appropriate
Each axiom, including those newly acquired through the constant
specification itself, have justifications. In the formal setting, for
each axiom  there is a constant  such that 
is in , and
if ,
 then 

, for
 each .
Axiomatically appropriate constant specifications
 are necessary

e2

CS L

en : en−1 : … : e1 : A(n ≥ 1),

A L e1, e2,… , en

n CS

en : en−1 : … : e1 : A

CS en−1 : … : e1 : A CS

CS = ∅

J0

CS

A e1 e1 : A CS

en : en−1 : … : e1 : A ∈ CS

en+1 : en : en−1 : … : e1 : A ∈ CS n ≥ 1

Sergei Artemov, Melvin Fitting, and Thomas Studer
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for ensuring the Internalization property, discussed at
 the end of
this section.

Total
For each axiom  and any constants ,

The name TCS is reserved for the total
constant specification (for
a given logic). Naturally, the total
 constant specification is
axiomatically appropriate.

We may now specify:

Logic of Justifications with given Constant Specification:


Let  be a constant specification.  is the
logic  +  ; the
axioms are those of
  together with the members of , and the only
rule of inference is Modus Ponens. Note that
  is .

Logic of Justifications:


 is the logic  + Axiom
Internalization Rule. The new rule states:

For each axiom  and any constants  infer 
.

The latter embodies the idea of unrestricted Logical Awareness for
 . A
similar rule appeared in the Logic of Proofs
 , and has also been
anticipated in Goldman’s
 (Goldman 1967). Logical Awareness, as
expressed by axiomatically
 appropriate Constant Specifications, is an
explicit incarnation of the
 Necessitation Rule in Modal Logic: 

, but restricted to axioms. Note that  coincides
with .

The key feature of Justification Logic systems is their ability to
internalize
their own derivations as provable justification assertions
 within their
languages. This property was anticipated in (Gödel
1938).

A e1, e2,… , en

en : en−1 : … : e1 : A ∈ CS.

CS JCS J0 CS

J0 CS

J0 J∅

J J0

A e1, e2,… , en

en : en−1 : … : e1 : A

J

LP

⊢ F ⇒⊢ □F J JTCS

Justification Logic

16 Stanford Encyclopedia of Philosophy

Theorem 1: For each axiomatically appropriate
constant specification
, J  enjoys Internalization:

If , then  for some justification term
 .

Proof. Induction on derivation length. Suppose
    . If  is a member
of ,
or a member of , there is a constant  (where 
might be 1)
such that  is in , since  is
axiomatically appropriate. Then

 is derivable. If 
 is obtained by Modus Ponens from 
and
 , then, by the Induction Hypothesis,  and 
for some . Using the Application
Axiom, .

See Section 2 of the supplementary document
 Some More Technical
Matters
 for examples of concrete syntactic derivations in justification
logic.

2.4 Extending Basic Justification Logic

The basic justification logic , and its extension
 with a constant
specification , is an explicit
counterpart of the smallest normal modal
logic . A
 proper definition of counterpart will be given in Section 4
because
 the notion of realization is central, but some hints are
 already
apparent at this stage of our presentation. For instance, it
 was noted in
Section 1.1 that (1), , is an explicit
version of the familiar modal principle (2), .
In a similar way
the first justification logic  is an explicit
counterpart of
modal . It turns out that many modal
 logics have justification logic
counterparts—indeed, generally
more than one. In what follows we begin
by discussing some very
familiar logics, leading up to  and .
Up to
this point much of our original motivation applies—we have
justification
logics that are interpretable in arithmetic. Then we
move on to a broader
family of modal logics, and the arithmetic
 motivation is no longer

CS CS

⊢ F ⊢ p : F p

⊢ F F

J0 CS en n

en : F CS CS

en : F F X → F

X ⊢ s : (X → F) ⊢ t : X

s, t ⊢ [s ⋅ t] : F

J0
JCS

K

s:(A → B) → (t:A → [s ⋅ t]:B)

□(A → B) → (□A → □B)

LP

S4

S4 LP
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applicable. The phenomenon of having a modal
 logic with a justification
logic counterpart has turned out to be
unexpectedly broad.

In almost all cases, one must add operations to the  and
  of , along
with axioms capturing their
intended behavior. The exception is factivity,
discussed next, for
 which no additional operations are required, though
additional axioms
are. It is always understood that constant specifications
cover axioms
from the enlarged set. We continue using the terminology of
Section
 2.3; for instance a constant specification is axiomatically
appropriate if it meets the condition as stated there, for all
 axioms
including any that have been added to the original set.
Theorem 1 from
Section 2.3 continues to apply to our new justification
logics, and with the
same proof: if we have a justification logic
  with an axiomatically
appropriate constant
specification, Internalization holds.

2.5 Factivity

Factivity states that justifications are sufficient for an agent to
 conclude
truth. This is embodied in the following.

Factivity Axiom .

The Factivity Axiom has a similar motivation to the Truth Axiom of
Epistemic Logic, , which is widely accepted as
a basic property
of knowledge.

Factivity of justifications is not required in basic Justification
 Logic
systems, which makes them capable of representing both partial
 and
factive justifications. The Factivity Axiom appeared in the Logic
of Proofs

, Section 1.2, as a principal feature of
mathematical proofs. Indeed, in
this setting Factivity is clearly
valid: if there is a mathematical proof  of 

, then 
must be true.

+ ⋅ J0

JLCS

t : F → F

□F → F

LP

t

F F
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The Factivity Axiom is adopted for justifications that lead to
knowledge.
However, factivity alone does not warrant knowledge, as has
 been
demonstrated by the Gettier examples (Gettier 1963).

Logic of Factive Justifications:

 + Factivity;
 + Factivity.

Systems  corresponding to Constant Specifications
  are defined as
in Section 2.3.

2.6 Positive Introspection

One of the common principles of knowledge is identifying
knowing and
knowing that one knows. In a modal
 setting, this corresponds to 

. This
principle has an adequate explicit counterpart: the fact
that an agent
 accepts  as sufficient evidence for  serves as sufficient
evidence for . Often such ‘meta-evidence’ has a
 physical form: a
referee report certifying that a proof in a paper is
 correct; a computer
verification output given a formal proof  of
  as an input; a formal proof
that  is a proof of , etc.
A Positive Introspection operation ‘!’ may be
added to the language for this purpose; one then assumes that given
 , the
agent produces a justification !  of  such
 that .
Positive Introspection in
this operational form first appeared in the Logic
of Proofs
 .

Positive Introspection Axiom: .

We then define:

 + Positive Introspection;
 + Positive
Introspection.[3]

JT0 = J0
JT = J

JTCS CS

□F → □□F

t F

t : F

t F

t F

t

t t : F t : F →!t : (t : F)

LP

t : F →!t : (t : F)

J4 := J

LP := JT
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Logics , and
  are defined in the natural way (cf.
Section
2.3).

In the presence of the Positive Introspection Axiom, one can limit the
scope of the Axiom Internalization Rule to internalizing axioms which
are
not of the form . This is how it was done in
 : Axiom
Internalization can then be emulated by using
!!  instead of

,
etc. The notion of Constant Specification can also be
simplified
 accordingly. Such modifications are minor and they do not
affect the
main theorems and applications of Justification Logic.

2.7 Negative Introspection

(Pacuit 2006, Rubtsova 2006) considered the Negative
 Introspection
operation ‘?’ which verifies that a
given justification assertion is false. A
possible motivation for
considering such an operation is that the positive
introspection
operation ‘!’ may well be regarded as capable of providing
conclusive verification judgments about the validity of
 justification
assertions , so when  is not a
 justification for , such a ‘!’ should
conclude that
 . This is normally the case for computer proof
verifiers, proof checkers in formal theories, etc. This motivation is,
however, nuanced: the examples of proof verifiers and proof checkers
work with both  and  as inputs, whereas the Pacuit-Rubtsova
format ?
suggests that the only input for ‘?’ is a
justification , and the result ?  is
supposed to justify
 propositions  uniformly for all s for which 

 does not hold. Such an operation ‘?’ does not exist
 for formal
mathematical proofs since ?  should then be a single
 proof of infinitely
many propositions , which is
 impossible. The operation ‘?’ was,
historically, the first
example that did not fit into the original framework in
which
justifications were abstract versions of formal proofs.

Negative Introspection Axiom 

J40, J4CS, LP0 LPCS

e : A LP

e : (!e : (e : A))

e3 : (e2 : (e1 : A))

t : F t F

¬t : F

t F t

t t

¬t : F F

t : F

t

¬t : F

¬t : F →?t : (¬t : F)
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We define the systems:

 + Negative Introspection;
 +  ;
 + Factivity

and naturally extend these definitions to , and .

2.8 Geach Logics and More

Justification logics involving  were the first examples that went
beyond
sublogics of . More recently it has been
 discovered that there is an
infinite family of modal logics
that have justification counterparts, but for
which the connection
 with arithmetic proofs is weak or missing. We
discuss a single case in
some detail, and sketch others.

Peter Geach proposed the axiom scheme
 . When added
 to
axiomatic  it yields an interesting logic known as
 . Semantically,
Geach’s scheme imposes
 confluence on frames. That is, if two possible
worlds,
  and  are accessible from the same world , there
 is a
common world  accessible from both  and .
Geach’s scheme was
generalized in Lemmon
 and Scott (1977) and a corresponding notation
was introduced:
  is the scheme , where 

.
 Semantically these schemes correspond to generalized
versions of
confluence. Some people have begun referring to the schemes
as
Geach schemes, and we will follow this practice. More
 generally, we
will call a modal logic a Geach logic if it can
be axiomatized by adding a
finite set of Geach schemes to
 . The original Geach scheme is
 ,
but also note that
  is ,
  is
 ,

is
 , and 
 is , so Geach logics include the most
common
of the modal logics. Geach logics constitute an infinite family.

J45 = J4

JD45 = J45 ¬t : ⊥

JT45 = J45

J45CS, JD45CS JT45CS

?

LP

◊□X→□◊X

S4 S4.2

w1 w2 w0

w4 w1 w2

Gk,l,m,n
◊k□lX→□m◊nX

k, l,m,n ≥ 0

K G1,1,1,1

□X→X G0,1,0,0
□X→□□X G0,1,2,0

◊X→□◊X

G1,0,1,1 X→□◊X G0,0,1,1
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Every Geach logic has a justification counterpart. Consider the
 original
Geach logic, with axiom scheme ,
  added to a
system
for —the system 
 mentioned above. We build a justification
counterpart for
  axiomatically by starting with .
Then we add two
function symbols,  and , each two-place, and
adopt the following axiom
scheme, calling the resulting justification
logic .

There is some informal motivation for this scheme. In
 , because of the
axiom scheme
 , we have provability of  for any
 and , and thus
provability of . In any context
one of the

disjuncts must hold. The scheme above is equivalent to

, which
informally says that in any context

we have means for computing a
justification for the disjunct that holds. It
is a strong assumption,
but not implausible at least in some circumstances.

A realization theorem connects  and
 , though it is not known if
this has a constructive
proof.

As another example, consider ,
 ,
 or equivalently 
. It has as a corresponding
 justification axiom

scheme the following, where , , and
  are three-place function symbols.

An intuitive interpretation for , , and  is not as
clear as it is for ,
but formally things
behave quite well.

Even though the Geach family is infinite, these logics do not cover
the full
range of logics with justification counterparts. For
 instance, the normal
modal logic using the axiom scheme
 , sometimes called shift
reflexivity, is not a Geach logic, but it does have a
justification counterpart.
Add a one-place function symbol  to
 the machinery building up

G1,1,1,1
◊□X→□◊X

S4 S4.2

S4.2 LP

f g

J4.2

¬f(t,u):¬t:X→g(t,u):¬u:¬X

LP

t:X→X (t:X ∧ u:¬X)→⊥

t u ¬t:X ∨ ¬u:¬X

f(t,u):¬t:X ∨ g(t,u):¬u:¬X

S4.2 J4.2

G1,2,2,1
◊□□X→□□◊X

□¬□□X ∨ □□¬□X

f g h

f(t,u, v):¬t:u:X ∨ g(t,u, v):h(t,u, v):¬v:¬X

f g h G1,1,1,1

□(□X→X)

k
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justification terms, and adopt the
 justification axiom scheme 
. A
 Realization Theorem holds; this is shown in Fitting

(2014b). We speculate that all logics
axiomatized with Sahlquist formulas
will have justification
 counterparts, but this remains a conjecture at this
point.

3. Semantics

The now-standard semantics for justification logic originates in
 (Fitting
2005)—the models used are generally called Fitting
 models in the
literature, but will be called possible world
 justification models here.
Possible world justification models
 are an amalgam of the familiar
possible world semantics for logics of
 knowledge and belief, due to
Hintikka and Kripke, with machinery
 specific to justification terms,
introduced by Mkrtychev in (Mkrtychev
1997), (cf. Section 3.4).

3.1 Single-Agent Possible World Justification Models for 

To be precise, a semantics for , where  is
 any constant
specification, is to be defined. Formally, a possible
 world justification
logic model for  is a
structure  . Of this,  is a
standard  frame, where
  is a set of possible worlds and  is a
binary
relation on it.  is a mapping from propositional
variables to subsets of ,
specifying atomic truth at
possible worlds.

The new item is , an evidence function, which
originated in (Mkrtychev
1997). This maps justification terms and
 formulas to sets of worlds. The
intuitive idea is, if the possible
world  is in , then  is
relevant or
admissible evidence for  at world
  . One should not think of relevant
evidence as conclusive.
Rather, think of it as more like evidence that can
be admitted in a
court of law: this testimony, this document is something a
jury should
 examine, something that is pertinent, but something whose

k(t):(t:X→X)

J

JCS CS

JCS M = ⟨G,R, E,V⟩ ⟨G,R⟩

K G R

V G

E

Γ E(t,X) t

X Γ
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truth-determining status is yet to be considered. Evidence functions
must
meet certain conditions, but these are discussed a bit later.

Given a  possible world justification model
  , truth
of formula  at possible world
  is denoted by , and is
required to meet the following standard conditions:

For each :

1.  iff  for  a propositional letter;
2. it is not the case that 
;
3.  iff it is not the
 case that  or 

.

These just say that atomic truth is specified arbitrarily, and
propositional
connectives behave truth-functionally at each world. The
key item is the
next one.

1.  if and only if  and, for every 
with
 , we have that .

This condition breaks into two parts. The clause requiring that

for every 
such that  is the familiar
Hintikka/Kripke condition
for  to be believed, or be believable,
 at  . The clause requiring that 

 adds that  should be relevant evidence for  at
  . Then,
informally,  is true at a possible world
if  is believable at that world
in the usual sense of epistemic
logic, and  is relevant evidence for  at
that world.

It is important to realize that, in this semantics, one might not
 believe
something for a particular reason at a world either because it
is simply not
believable, or because it is but the reason is not
appropriate.

JCS M = ⟨G,R, E,V⟩

X Γ M, Γ ⊩ X

Γ ∈ G

M, Γ ⊩ P Γ ∈ V(P) P

M, Γ ⊩ ⊥

M, Γ ⊩ X → Y M, Γ ⊩ X

M, Γ ⊩ Y

M, Γ ⊩ (t : X) Γ ∈ E(t,X) Δ ∈ G

ΓRΔ M,Δ ⊩ X

M,Δ ⊩ X

Δ ∈ G ΓRΔ

X Γ

Γ ∈ E(t,X) t X Γ

t : X X

t X
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Some conditions must still be placed on evidence functions, and the
constant specification must also be brought into the picture. Suppose
one
is given  and  as justifications. One can combine these
in two different
ways: simultaneously use the information from both;
 or use the
information from just one of them, but first choose which
one. Each gives
rise to a basic operation on justification terms,
  and +, introduced
axiomatically in Section 2.2.

Suppose  is relevant evidence for an implication and  is
 relevant
evidence for the antecedent. Then  and  together
 provides relevant
evidence for the consequent. The following condition
 on evidence
functions is assumed:

With this condition added, the validity of

is secured.

If  and  are items of evidence, one might say that something
is justified
by one of  or , without bothering to specify
which, and this will still be
evidence. The following requirement is
imposed on evidence functions.

Not surprisingly, both

and

now hold.

s t

⋅

s t

s t

E(s,X → Y ) ∩ E(t,X) ⊆ E(s ⋅ t,Y )

s : (X → Y ) → (t : X → [s ⋅ t] : Y )

s t

s t

E(s,X) ∪ E(t,X) ⊆ E(s + t,X)

s : X → [s + t] : X

t : X → [s + t] : X
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Finally, the Constant Specification  should be taken into
 account.
Recall that constants are intended to represent reasons for
 basic
assumptions that are accepted outright. A model 
meets
Constant Specification  provided: if  then (c,X) = .

Possible World Justification Model A possible world
 justification
model for  is a structure
  satisfying all the
conditions listed above, and
meeting Constant Specification .

Despite their similarities, possible world justification models allow
a fine-
grained analysis that is not possible with Kripke models. See
Section 3 of
the supplementary document
 Some More Technical Matters
 for more
details.

3.2 Weak and Strong Completeness

A formula  is valid in a particular model for
  if it is true at all
possible worlds of the model.
Axiomatics for  was given in Sections
2.2 and 2.3.
A completeness theorem now takes the expected form.

Theorem 2: A formula  is provable in
  if and only if  is valid
in all
  models.

The completeness theorem as just stated is sometimes referred to as
weak
completeness. It maybe a bit surprising that it is
 significantly easier to
prove than completeness for the modal logic
 . Comments on this point
follow. On the other hand it is
 very general, working for all Constant
Specifications.

In (Fitting 2005) a stronger version of the semantics was also
introduced.
A model  is called fully
 explanatory if it meets the
following condition. For each
 , if  for
 all  such
that 
, then  for some justification
term . Note that the

CS

M = ⟨G,R, E,V⟩

CS c : X ∈ CS E G

JCS M = ⟨G,R, E,V⟩

CS

X JCS

JCS

X JCS X

JCS

K

M = ⟨G,R, E,V⟩

Γ ∈ G M,Δ ⊩ X Δ ∈ G

ΓRΔ M, Γ ⊩ t : X t
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condition, 
 for all  such that  , is the usual
condition for  being believable at
  in the Hintikka/Kripke sense. So,
fully explanatory really
 says that if a formula is believable at a possible
world, there is a
justification for it.

Not all weak models meet the fully explanatory condition. Models that
do
are called strong models. If constant specification 
 is rich enough so
that an Internalization theorem holds, then one has
 completeness with
respect to strong models meeting . Indeed, in
 an appropriate sense
completeness with respect to strong models is
equivalent to being able to
prove Internalization.

The proof of completeness with respect to strong models bears a close
similarity to the proof of completeness using canonical models for the
modal logic . In turn, strong models can be used to give
a semantic proof
of the Realization Theorem (cf. Section 4).

3.3 The Single-Agent Family

So far a possible world semantics for one justification logic has been
discussed, for , the counterpart of . Now
 things are broadened to
encompass justification analogs of other
familiar modal logics.

Simply by adding reflexivity of the accessibility relation
  to the
conditions for a model in Section 3.1, one
gains the validity of 
for every  and
 , and obtains a semantics for , the justification
 logic
analog of the modal logic , the weakest logic of
knowledge. Indeed, if 

 then, in
particular,  is true at every state accessible from .
Since the accessibility relation is required to be reflexive,
 . Weak
and strong completeness
theorems are provable using the same machinery
that applied in the
 case of , and a semantic proof of a Realization

M,Δ ⊩ X Δ ∈ G ΓRΔ

X Γ

CS

CS

K

J K

R

t:X → X

t X JT

T

M, Γ⊩t:X X Γ

M, Γ⊩X

J
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Theorem
connecting  and  is also available. The
same applies to the
logics discussed below.

For a justification analog of  an additional unary
operator ‘!’ is added to
the term language, see Section
2.5. Recall this operator maps justifications
to justifications, where
the idea is that if  is a justification for , then 
should be a justification for . Semantically this adds
 conditions to a
model , as
follows.

First, of course,  should be transitive, but not
 necessarily reflexive.
Second, a monotonicity condition on evidence
functions is required:

And finally, one more evidence function condition is
needed.

These conditions together entail the validity of  and produce
a semantics for ,
 a justification analog of , with a Realization
Theorem
connecting them. Adding reflexivity leads to a logic that is called

 for historical reasons.

We have discussed justification logics that are sublogics of
 ,
corresponding to sublogics of the modal logic
 . The first examples that
went beyond 
were those discussed in Section 2.7, involving a negative
introspection operator, ‘?’. Models for justification
logics that include this
operator add three conditions. First R is
 symmetric. Second, one adds a
condition that has come to be known as
strong evidence:  for
all . Finally, there is a condition on
the evidence function:

If this machinery is added to that for  we get the
 logic , a
justification counterpart of
 . Axiomatic soundness and completeness

JT T

K4

t X !t

t:X

M = ⟨G,R, E,V⟩

R

If ΓRΔ and Γ ∈ E(t,X) then Δ ∈ E(t,X)

E(t,X) ⊆ E(!t, t:X)

t:X →!t:t:X

J4 K4

LP

LP

S4

LP

M, Γ⊩t:X

Γ ∈ E(t,X)

E(t,X) ⊆ E(?t, ¬t:X)
–

J4 J45

K45
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can be proved.
 In a similar way, related logics  and
  can be
formulated semantically. A Realization
Theorem taking the operator  into
account was shown in (Rubtsova
2006).

Moving to Geach logics as introduced in Section 2.8, a semantic model
for
 can also be specified. Suppose  is an
  model. We

add the following requirements. First, the
 frame must be convergent, as
with . Second, as with
 ,  must be a strong evidence function.
And
third, . Completeness and
soundness results
follow in the usual way.

In a similar way every modal logic axiomatized by Geach schemes in
this
family has a justification counterpart, with a Fitting semantics
 and a
realization theorem connecting the justification counterpart
 with the
corresponding modal logic. In particular, this tells us that
the justification
logic family is infinite, and certainly much broader
than it was originally
thought to be. It is also the case that some
 modal logics not previously
considered, and not in this family, have
justification counterparts as well.
Investigating the consequences of
all this is still work in progress.

3.4 Single World Justification Models

Single world justification models were developed considerably before
the
more general possible world justification models we have been
discussing,
(Mkrtychev 1997). Today they can most simply be thought of
as possible
world justification models that happen to have a single
 world. The
completeness proof for  and the other
 justification logics mentioned
above can easily be modified to
 establish completeness with respect to
single world justification
 models, though of course this was not the
original argument. What
 completeness with respect to single world
justification models tells
 us is that information about the possible world
structure of
 justification models can be completely encoded by the

JD45 JT45

?

J4.2 G = ⟨G,R, E,V⟩ LP

S4.2 ? E

E(f(t,u), ¬t:X) ∪ E(g(t,u), ¬u:¬X) = G

J
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admissible
 evidence function, at least for the logics discussed so far.
Mkrtychev
used single world justification models to establish decidability
of
 , and others have made fundamental use of them in
 setting
complexity bounds for justification logics, as well as for
 showing
conservativity results for justification logics of belief
 (Kuznets 2000,
Kuznets 2008, Milnikel 2007, Milnikel 2009). Complexity
 results have
further been used to address the problem of logical
omniscience (Artemov
and Kuznets 2014).

3.5 Ontologically Transparent Semantics

The formal semantics for Justification Logic described above in
 3.1–3.4
defines truth value at a given world  the same
 way it is done in
Awareness Models:  holds at 
iff

1.  holds at all worlds accessible from  and

2.  is admissible evidence for  according to the given evidence
function.

In addition, there is a different kind of semantics, so-called modular
semantics, which focuses on making more transparent the ontological
status of justifications. Within modular semantics propositions
receive the
usual classical truth values and justifications are
 interpreted syntactically
as sets of formulas. We retain a classical
 interpretation  of the
propositional formulas , which,
in the case of a single world, reduces
to

i.e., each
 formula gets a truth value 0 (false) or 1 (true), with the usual
Boolean conditions:  iff  or
 , etc. The principal issue is

LP

Γ

t:F Γ

F Γ

t F

∗

Fm

∗ : Fm ↦   {0, 1}

⊩A → B ⊮ A ⊩B
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how to interpret
 justification terms. For sets of formulas  and , we
define

Informally,  is the result of applying
Modus Ponens once between all
members of  and of 
 (in that order). Justification terms Tm are
interpreted as
subsets of the set of formulas:

such that

These conditions correspond to the basic justification logic
 ; other
systems require additional closure properties of
 . Note that whereas
propositions in modular models are
 interpreted semantically, as truth
values, justifications are
interpreted syntactically, as sets of formulas. This
is a principal
hyperintensional feature: a modular model may treat distinct
formulas
  and  as equal in the sense that , but
still be able to
distinguish justification assertions  and
 , for example when 
but 
yielding  but . In the general
possible world setting,
formulas are interpreted classically as
 subsets of the set  of possible
worlds,

and
 justification terms are interpreted syntactically as sets of formulas
at
each world

Soundness and completeness of Justification
Logic systems with respect to
modular models have been demonstrated in
(Artemov 2012; Kuznets and
Studer
2012).

X Y

X ⋅ Y = {F ∣ G→F ∈ X and G ∈ Y  for some G}.

X ⋅ Y

X Y

∗ : Tm ↦   2Fm

(s ⋅ t)∗ ⊇ s∗ ⋅ t∗  and   (s + t)∗ ⊇ s∗ ∪ t∗.

J

∗

F G F ∗ = G∗

t:F t:G F ∈ t∗

G ∉ t∗ ⊩t:F ⊮ t:G

W

∗ : Fm ↦   2W ,

∗ : W × Tm ↦   2Fm.
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3.6 Connections with Awareness Models

The logical omniscence problem is that in epistemic logics all
tautologies
are known and knowledge is closed under consequence, which
 is
unreasonable. In Fagin and Halpern
 (1988) a simple mechanism for
avoiding the problems was
 introduced. One adds to the usual Kripke
model structure an awareness
function  indicating for each world which
formulas the agent
is aware of at this world. Then a formula is taken to be
known at a
 possible world  if 1) the formula is true at all worlds
accessible from  (the Kripkean condition for knowledge) and
2) the agent
is aware of the formula at . Awareness
functions can serve as a practical
tool for blocking knowledge of an
arbitrary set of formulas. However as
logical structures, awareness
models can exhibit unusual behavior due to
the lack of natural closure
 properties. For example, the agent can know 

 but be aware
of neither  nor  and hence not know either.

Possible world justification logic models use a forcing definition
reminiscent of the one from the awareness models: for any given
justification  the justification assertion  holds at
world  iff 1)  holds
at all worlds 
accessible from  and 2)  is admissible evidence for
  at 

, . The principal
 difference is in the operations on
justifications and corresponding
closure conditions on admissible evidence
function  in
Justification Logic models, which may hence be regarded as
a dynamic
 version of awareness models which necessary closure
properties
 specified. This idea has been explored in Sedlár
 (2013) which
worked with the
 language of , thinking of it as a multi-agent modal
logic, and taking justification terms as agents (more properly,
 actions of
agents). This shows that Justification Logic models absorb
 the usual
epistemic themes of awareness, group agency and dynamics in
 a natural
way.
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Γ Γ ∈ E(t,F)

E

LP

Justification Logic

32 Stanford Encyclopedia of Philosophy

4. Realization Theorems

The natural modal epistemic counterpart of the evidence assertion  is 
, read for some x, x: . This
observation leads to the notion of forgetful

projection which
 replaces each occurrence of  by  and hence
converts
a Justification Logic sentence  to a corresponding Modal Logic
sentence . The forgetful projection extends in the natural
 way from
sentences to logics.

Obviously, different Justification Logic sentences may have the same
forgetful projection, hence  loses certain information that
was contained
in . However, it is easily observed that the
 forgetful projection always
maps valid formulas of Justification Logic
 (e.g., axioms of  to valid
formulas of a corresponding
 Epistemic Logic  in this case). The
converse also
holds: any valid formula of Epistemic Logic is the forgetful
projection of some valid formula of Justification Logic. This follows
from
the Correspondence Theorem 3.

Theorem 3: .

This correspondence holds for other pairs of Justification and
 Epistemic
systems, for instance  and ,
or  and , and many others. In such
extended form, the Correspondence Theorem shows that major modal
logics such as  and some others have exact
Justification
Logic counterparts.

At the core of the Correspondence Theorem is the following Realization
Theorem.

Theorem 4: There is an algorithm which, for each
modal formula 
derivable in , assigns evidence
terms to each occurrence of modality
in  in such a way that the
 resulting formula  is derivable in .
Moreover,
 the realization assigns evidence variables to the negative

t : F

□F F

t : F □F

S

S o

S o

S
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(K

Jo = K

J4 K4 LP S4
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occurrences
 of modal operators in , thus respecting the existential
reading
of epistemic modality.

Known realization algorithms which recover evidence terms in modal
theorems use cut-free derivations in the corresponding modal logics.
Alternatively, the Realization Theorem can be established semantically
by
Fitting’s method or its proper modifications. In principle,
 these semantic
arguments also produce realization procedures which are
 based on
exhaustive search.

It would be a mistake to draw the conclusion that any
modal logic has a
reasonable Justification Logic counterpart. For
example the logic of formal
provability, , (Boolos
1993) contains the Löb Principle:

which does not seem to have an epistemically acceptable explicit
version.
Consider, for example, the case where  is the
propositional constant 
for false. If an analogue of
Theorem 4 would cover the Löb Principle there
would be
justification terms  and  such that  .
But this is intuitively
false for factive justification. Indeed, 
 is
an instance of the Factivity Axiom. Apply Axiom Internalization to
obtain 

 for some constant .
 This choice of  makes the
antecedent of  intuitively true and the
conclusion
false[4].
 In particular, the Löb Principle (5) is not valid for the proof
interpretation (cf. (Goris 2007) for a full account of which
 principles of 

 are realizable).

The Correspondence Theorem gives fresh insight into epistemic modal
logics. Most notably, it provides a new semantics for the major modal
logics. In addition to the traditional Kripke-style
 ‘universal’ reading of 

 as F holds in all
 possible situations, there is now a rigorous

F

GL

□(□F → F) → □F ,(5)

F ⊥

s t x : (s : ⊥ → ⊥) → t : ⊥

s : ⊥ → ⊥

c : (s : ⊥ → ⊥) c c

c : (s : ⊥ → ⊥) → t : ⊥

GL

□F
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‘existential’ semantics for  that can be read as
there is a witness (proof,
justification) for F.

Justification semantics plays a similar role in Modal Logic to that
played
by Kleene realizability in Intuitionistic Logic. In both cases,
the intended
semantics is existential: the
Brouwer-Heyting-Kolmogorov interpretation
of Intuitionistic Logic
(Heyting 1934, Troelstra and van Dalen 1988, van
Dalen 1986) and
 Gödel’s provability reading of  (Gödel
 1933, Gödel
1938). In both cases there is a possible-world
 semantics of universal
character which is a highly
potent and dominant technical tool. It does not,
however, address the
 existential character of the intended semantics. It
took Kleene
 realizability (Kleene 1945, Troelstra 1998) to reveal the
computational semantics of Intuitionistic Logic and the Logic of
Proofs to
provide exact BHK semantics of proofs for Intuitionistic and
 Modal
Logic.

In the epistemic context, Justification Logic and the Correspondence
Theorem add a new ‘justification’ component to modal
 logics of
knowledge and belief. Again, this new component was, in
fact, an old and
central notion which has been widely discussed by
 mainstream
epistemologists but which remained out of the scope of
classical epistemic
logic. The Correspondence Theorem tells us that
 justifications are
compatible with Hintikka-style systems and hence
 can be safely
incorporated into the foundation for Epistemic Modal
Logic.

See Section 4 of the supplementary document
 Some More Technical
Matters
for more on Realization Theorems.

5. Generalizations

So far in this article only single-agent justification logics,
 analogous to
single-agent logics of knowledge, have been considered.
 Justification

□F

S4
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Logic can be thought of as logic of explicit
 knowledge, related to more
conventional logics of implicit
knowledge. A number of systems beyond
those discussed above have been
 investigated in the literature, involving
multiple agents, or having
 both implicit and explicit operators, or some
combination of
these.

5.1 Mixing Explicit and Implicit Knowledge

Since justification logics provide explicit justifications, while
conventional
logics of knowledge provide an implicit knowledge
operator, it is natural
to consider combining the two in a single
system. The most common joint
logic of explicit and implicit knowledge
 is  (Artemov and Nogina
2005). The language of
  is like that of , but with an
 implicit
knowledge operator added, written either  or
  . The axiomatics is like
that of , combined
 with that of  for the implicit operator, together
with
 a connecting axiom, , anything that has an
 explicit
justification is knowable.

Semantically, possible world justification models for 
 need no
modification, since they already have all the machinery of
Hintikka/Kripke
models. One models the  operator in the usual
way, making use of just
the accessibility relation, and one models the
 justification terms as
described in Section 3.1 using both
 accessibility and the evidence
function. Since the usual condition for
  being true at a world is one of
the two clauses of the
 condition for  being true, this immediately
yields the
 validity of , and soundness follows
 easily.
Axiomatic completeness is also rather straightforward.

In  both implicit and explicit knowledge is
 represented, but in
possible world justification model semantics a
single accessibility relation
serves for both. This is not the only
way of doing it. More generally, an
explicit knowledge accessibility
 relation could be a proper extension of

S4LP

S4LP LP

K □

LP S4

t : X → □X

LP

□

□X

t : X

t : X → □X

S4LP
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that for implicit knowledge.
 This represents the vision of explicit
knowledge as having stricter
standards for what counts as known than that
of implicit knowledge.
 Using different accessibility relations for explicit
and implicit
knowledge becomes necessary when these epistemic notions
obey
 different logical laws, e.g.,  for implicit knowledge
 and  for
explicit. The case of multiple accessibility
 relations is commonly known
in the literature as Artemov-Fitting
models, but will be called multi-agent
possible world models here.
(cf. Section 5.2).

Curiously, while the logic  seems quite natural, a
 Realization
Theorem has been problematic for it: no such theorem can
 be proved if
one insists on what are called normal
 realizations (Kuznets 2010).
Realization of implicit knowledge
 modalities in  by explicit
justifications which would
respect the epistemic structure remains a major
challenge in this
area.

Interactions between implicit and explicit knowledge can sometimes be
rather delicate. As an example, consider the following mixed principle
of
negative introspection (again  should be read as an
 implicit epistemic
operator),

From the provability perspective, it is the right form of negative
introspection. Indeed, let  be interpreted as F is
provable and  as t
is a proof of F in a given
formal theory , e.g., in Peano Arithmetic .
Then
(6) states a provable principle. Indeed, if  is not a proof of
  then,
since this statement is decidable, it can be established
inside , hence in 
this sentence is provable. On the other
hand, the proof  of ‘  is not a proof
of ’
depends on both  and  and cannot be
computed given
 only. In this respect,  cannot be
 replaced by any specific proof term

depending on  only and (6)
 cannot be presented in an entirely explicit
justification-style
format.

S5 LP

S4LP

S4LP

□

¬t : X → □¬t : X.(6)

□F t : F

T PA

t F

T T

p t

F t F , p = p(t,F)
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The first examples of explicit/implicit knowledge systems appeared in
the
area of provability logic. In (Sidon 1997, Yavorskaya (Sidon)
 2001), a
logic  was introduced which combined the
 logic of provability 
with the logic of proofs
 , but to ensure that the resulting system had
desirable
 logical properties some additional operations from outside
 the
original languages of  and  were
 added. In (Nogina 2006, Nogina
2007) a complete logical system,
 , for proofs and provability was
offered, in the sum
of the original languages of  and
 . Both  and

 enjoy
completeness relative to the class of arithmetical models, and
also
relative to the class of possible world justification models.

Another example of a provability principle that cannot be made
completely explicit is the Löb Principle (5). For each of
  and , it
is easy to find a proof term
  such that

holds. However, there is no realization which makes all three
  s in (5)
explicit. In fact, the set of realizable provability
 principles is the
intersection of  and 
(Goris 2007).

5.2 Multi-Agent Possible World Justification Models

In multi-agent possible world justification models multiple
 accessibility
relations are employed, with connections between them,
(Artemov 2006).
The idea is, there are multiple agents, each with an
 implicit knowledge
operator, and there are justification terms, which
each agent understands.
Loosely, everybody understands explicit
 reasons; these amount to
evidence-based common knowledge.

An -agent possible world justification model is a structure
 , …,
 meeting the
 following conditions.  is a set of possible

worlds.
Each of ,…,  is an
accessibility relation, one for each agent.

LPP GL

LP

GL LP

GLA

GL LP LPP

GLA

LPP GLA

l(x)

x : (□F → F) → l(x) : F(7)

□

GL S4

n ⟨G,R1

Rn,R, E,V⟩ G

R1 Rn
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These may be assumed to be
reflexive, transitive, or symmetric, as desired.
They are used to
model implicit agent knowledge for the family of agents.
The
 accessibility relation  meets the 
 conditions, reflexivity and
transitivity. It is used in the modeling
 of explicit knowledge.  is an
evidence function,
meeting the same conditions as those for  in Section
3.3.  maps propositional letters to sets of worlds, as
 usual. There is a
special condition imposed: for each  = 1,
…, .

If ,
 …,  is a multi-agent possible world
justification
model a truth-at-a-world relation, ,
is defined with
most of the usual clauses. The ones of particular
interest are these:

 if and only if, for every
  with , we
have
that .

 if and only if  and, for every  with

, we have that .

The condition  entails the
 validity of , for each
agent . If
there is only a single agent, and the accessibility relation for that
agent is reflexive and transitive, this provides another semantics for
 .
Whatever the number of agents, each agent accepts
 explicit reasons as
establishing knowledge.

A version of  with two agents was introduced and
 studied in
(Yavorskaya (Sidon) 2008), though it can be generalized to
 any finite
number of agents. In this, each agent has its own set of
 justification
operators, variables, and constants, rather than having
 a single set for
everybody, as above. In addition some limited
 communication between
agents may be permitted, using a new operator
 that allows one agent to
verify the correctness of the other
agent’s justifications. Versions of both
single world and more
general possible world justification semantics were
created for the
two-agent logics. This involves a straightforward extension
of the
notion of an evidence function, and for possible world justification

R LP

E

LP

V

i n,Ri ⊆ R

M = ⟨G,R1 Rn,R, E,V⟩
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models, using two accessibility relations. Realization theorems have
been
proved syntactically, though presumably a semantic proof would
 also
work.

Multi-agent models (where each agent has its own set of justification
operators) with explicit and implicit knowledge can be used to
epistemically analyze zero-knowledge proofs (Lehnherr, Ognjanovic, and
Studer 2022). Zero-knowledge proofs are protocols by which one agent
(the prover) can prove to another agent (the verifier) that the prover
has
certain knowledge (e.g., knows a password) without conveying any
information beyond the mere fact of the possession of knowledge (e.g.,
without revealing the password). The following formulas can be used to
describe the situation after the execution of the protocol, where the
term 
justifies the verifier’s knowledge that results from
the protocol:

meaning the protocol yields a justification
  to the verifier  that the
prover  knows ; and

i.e., for no term  the protocol justifies that the
verifier could know that 
justifies the prover’s knowledge
 of . That is, the protocol justifies that
the prover knows 
but it does not justify any possible evidence for that
knowledge.

There has been some exploration of the role of public announcements in
multi-agent justification logics (Renne 2008, Renne 2009).

There is more on the notion of evidence-based common knowledge in
Section 5 of the supplementary document
Some More Technical Matters.

s

s :V KP F ,

s V

P F

¬s :V t :P F  for any term t,

t t
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Besides multi-agent epistemic logics, there are other justification
 logics
that feature two types of terms. Kuznets, Marin, and
Strassburger (2021)
introduce an explicit version of constructive
 modal logic. There, the -
modality is realized by proof terms
like in . To realize the -modality, a
second kind of terms is introduced, which are called witness terms. In
constructive modal logic, the formula  means 
 is consistent. In its
realization , the witness term 
 represents an abstract witnessing
model for the formula .

Another example is dyadic deontic logic (DDL), which can be
axiomatized by two modalities  and . The formula
  means  is
settled true, and the conditional
  means  is obligatory given G.
Faroldi,
Rohani, and Studer (2023) consider an explicit version of DDL.
Again,
  is realized by a proof term as in , whereas
  is
realized by making use of a new type of terms
 that represent deontic
reasons.

6. Russell’s Example: Induced Factivity

There is a technique for using Justification Logic to analyze
 different
justifications for the same fact, in particular when some of
 the
justifications are factive and some are not. To demonstrate the
 technique
consider a well-known example:

□

LP ◊

◊F F

s : F s

F

□ ◯ □F F

◯(F/G) F

□F LP ◯(F/G)

If a man believes that the late Prime Minister’s last name began
with a ‘B,’ he believes what is true, since the late Prime
Minister
was Sir Henry Campbell
Bannerman[5].
But if he believes that Mr.
Balfour was the late Prime
Minister[6],
he will still believe that the
late Prime Minister’s last name
began with a ‘B,’ yet this belief,
though true, would not
 be thought to constitute knowledge.
(Russell 1912)
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As in the Red Barn Example, discussed in Section 1.1, here one has to
deal with two justifications for a true statement, one of which is
 correct
and one of which is not. Let  be a sentence
(propositional atom),  be a
designated justification variable for
 the wrong reason for  and  a
designated justification
variable for the right (hence factive) reason for .
Then,
Russell’s example prompts the following set of
assumptions[7]:

Somewhat counter to intuition, one can logically deduce factivity of

from :

1.  (assumption)
2.  (assumption)
3.  (from 1 and 2 by Modus Ponens)
4.  (propositional axiom)
5.  (from 3 and 4 by Modus Ponens)

However, this derivation utilizes the fact that  is a factive
justification for 
 to conclude , which
constitutes a case of ‘induced factivity’

for .
The question is, how can one distinguish the ‘real’
factivity of 
 from the ‘induced factivity’ of  ? Some sort of evidence-

tracking is needed here, and
Justification Logic is an appropriate tool. The
natural approach is to
consider the set of assumptions without ,
i.e.,

and establish that factivity of , i.e., 
is not derivable from .
Here is a possible world
justification model  =  in which 
holds but  does not:

,
 ,

 =  (and so not- ,

B w

B r

B

R = {w : B, r : B, r : B → B}

w

R

r : B

r : B → B

B

B → (w : B → B)

w : B → B

r

B w : B → B

w : B

r : B w : B

r : B

S = {w : B, r : B → B}

w w : B → B S

M (G,R, E,V) S

w : B → B

G = {1}

R = ∅

V(B) ∅ 1 ⊩ B)
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 =  for all pairs  except ,and
 =  .

It is easy to see that the closure conditions Application and
Sum on  are
fulfilled. At  holds, i.e.,

since  is admissible evidence for  at  and
there are no possible worlds
accessible from .
Furthermore,

since, according to  is not admissible evidence for
  at . Hence:

On the other hand,

since  does not hold at .

7. Self-referentiality of justifications

The Realization algorithms sometimes produce Constant Specifications
containing self-referential justification assertions ,
 that is,
assertions in which the justification (here  occurs in
 the asserted
proposition (here .

Self-referentiality of justifications is a new phenomenon which is not
present in the conventional modal language. In addition to being
intriguing
epistemic objects, such self-referential assertions provide
 a special
challenge from the semantical viewpoint because of the
 built-in vicious
circle. Indeed, to evaluate  one would expect
first to evaluate  and then
assign a justification object for
  to . However, this cannot be done since 

E(t,F) {1} (t,F) (r,B)

E(r,B) ∅

E

1,w : B

1 ⊩ w : B

w B 1

1

not-1 ⊩ r : B

E, r B 1

1 ⊩ r : B → B

not-1 ⊩ w : B → B

B 1
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 contains
  which is yet to be evaluated. The question of whether or not
modal logics can be realized without using self-referential
 justifications
was a major open question in this area.

The principal result by Kuznets in (Brezhnev and Kuznets 2006) states
that self-referentiality of justifications is unavoidable in
 realization of 
in . The current state
of things is given by the following theorem due to
Kuznets:

Theorem 5: Self-referentiality can be avoided in
realizations of modal
logics  and .
Self-referentiality cannot be avoided in realizations of
modal logics
  and .

This theorem establishes that a system of justification terms for
  will
necessarily be self-referential. This creates a
 serious, though not directly
visible, constraint on provability
 semantics. In the Gödelian context of
arithmetical proofs, the
problem was coped with by a general method of
assigning arithmetical
 semantics to self-referential assertions 
stating that
  is a proof of . In the Logic of Proofs 
 it was dealt
with by a non-trivial fixed-point construction.

Self-referentiality gives an interesting perspective on Moore’s
 Paradox.
See Section 6 of the supplementary document
 Some More Technical
Matters
for details.

The question of the self-referentiality of BHK-semantics for
intuitionistic
logic  has been answered by Junhua Yu
 (Yu 2014). Extending
Kuznets’ method, he established

Theorem 6: Each  realization of the
 intuitionistic law of double
negation  requires self referential constant
specifications.

A c
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K D
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More generally, Yu has proved that any double
negation of a classical
tautology (by Glivenko’s Theorem all of
them are theorems of ) needs
self-referential constant
specifications for its realization in . Another
example
of unavoidable self-referentiality was found by Yu in the purely
implicational fragment of . This suggests that the BHK
semantics of
intuitionistic logic (even just of intuitionistic
implication) is intrinsically
self-referential and needs a fixed-point
construction to connect it to formal
proofs in PA or similar systems.
This might explain, in part, why any
attempt to build provability BHK
semantics in a direct inductive manner
without self-referentiality was
doomed to failure.

8. Quantifiers in Justification Logic

While the investigation of propositional Justification Logic is far
 from
complete, there has also been some work on first-order versions.
Quantified versions of Modal Logic already offer complexities beyond
standard first-order logic. Quantification has an even broader field
to play
when Justification Logics are involved. Classically one
 quantifies over
‘objects,’ and models are equipped with a
domain over which quantifiers
range. Modally one might have a single
domain common to all possible
worlds, or one might have separate
domains for each world. The role of
the Barcan formula is well-known
here. Both constant and varying domain
options are available for
Justification Logic as well. In addition there is a
possibility that
has no analog for Modal Logic: one might quantify over
justifications
themselves.

Initial results concerning the possibility of Quantified Justification
Logic
were notably unfavorable. The arithmetical provability semantics
 for the
Logic of Proofs , naturally generalizes to a
 first-order version with
conventional quantifiers, and to a version
with quantifiers over proofs. In
both cases, axiomatizability
questions were answered negatively.

IPC

LC
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LP
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Theorem 7: The first-order logic of proofs is not
 recursively
enumerable (Artemov and Yavorskaya (Sidon) 2001). The
 logic of
proofs with quantifiers over proofs is not recursively
 enumerable
(Yavorsky 2001).

Although an arithmetic semantics is not possible, in (Fitting 2008) a
possible world semantics, and an axiomatic proof theory, was given for
a
version of  with quantifiers ranging over
 justifications. Soundness and
completeness were proved. At this point
 possible world semantics
separates from arithmetic semantics, which
may or may not be a cause for
alarm. It was also shown that
  embeds into the quantified logic by
translating  as “there exists a justification  such that ,” where 

 is the translation of . While
 this logic is somewhat complicated, it
has found applications, e.g.,
 in (Dean and Kurokawa 2009b) it is used to
analyze the Knower Paradox,
 though objections have been raised to this
analysis in (Arlo-Costa and
Kishida 2009).

A First-Order Logic of Proofs, , with quantifiers
 over individual
variables, has been presented in Artemov
and Yavorskaya (Sidon) (2011).
In
  proof assertions are represented by formulas of the
 form 
where  is a finite set of individual variables
 that are considered global
parameters open for substitution. All
occurrences of variables from  that
are free in  are also
 free in . All other free variables of  are
considered
local and hence bound in . For example, if  is
an
atomic formula, then in  variable  is
 free and variable  is
bound. Likewise, in  both variables are free, and in 


neither  nor  is free.

Proofs (justifications) are represented by proof terms which do not
contain
individual variables. In addition to 
operations there is one more series
of operations on proof terms,
 , corresponding to generalization
over individual
variable . The new axiom that governs this operation is 
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, with .
The complete list of  principles
along with
 realization of First-Order  can be found in Artemov
 and
Yavorskaya (Sidon) (2011). A
semantics for  has been developed in
Fitting
(2014a).

9. Historical Notes

The initial Justification Logic system, the Logic of Proofs
 , was
introduced in 1995 in (Artemov 1995) (cf. also
 (Artemov 2001)) where
such basic properties as Internalization,
 Realization, arithmetical
completeness, were first established.
  offered an intended provability
semantics for
Gödel’s provability logic , thus providing a
formalization
of Brouwer-Heyting-Kolmogorov semantics for
 intuitionistic
propositional logic. Epistemic semantics and
completeness (Fitting 2005)
were first established for
 . Symbolic models and decidability for 
are
due to Mkrtychev (Mkrtychev 1997). Complexity estimates first
appeared
in (Brezhnev and Kuznets 2006, Kuznets 2000, Milnikel 2007).
 A
comprehensive overview of all decidability and complexity results
can be
found in (Kuznets 2008). Systems ,
and  were first considered in
(Brezhnev 2001) under
different names and in a slightly different setting. 


appeared independently in (Pacuit 2006) and (Rubtsova 2006), and

 in (Pacuit 2006). The logic of uni-conclusion proofs
has been found

in (Krupski 1997). A more general approach to common
knowledge based
on justified knowledge was offered in (Artemov 2006).
Game semantics of
Justification Logic and Dynamic Epistemic Logic with
justifications were
studied in (Renne 2008, Renne 2009). Connections
between Justification
Logic and the problem of logical omniscience
were examined in (Artemov
and Kuznets 2009, Artemov and Kuznets 2014,
Wang 2009). The name
Justification Logic was introduced in
 (Artemov 2008), in which Kripke,
Russell, and Gettier examples were
 formalized; this formalization has
been used for the resolution of
paradoxes, verification, hidden assumption
analysis, and eliminating
 redundancies. In (Dean and Kurokawa 2009a),

t:XA→gen:x(t)X∀xA x ∉ X FOLP

S4

FOLP

LP

LP

S4

LP LP

J, J4 JT

JT45

JD45
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Justification Logic was
used for the analysis of Knower and Knowability
paradoxes.

The first two monographs on Justification Logic were published in 2019
(Artemov and Fitting 2019, Kuznets and Studer 2019).
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1. Mathematical Logic Tradition

Several well-known mathematical notions which appeared prior to
Justification Logic have sometimes been perceived as related to the BHK
idea: Kleene realizability (Troelstra 1998), Curry-Howard isomorphism
(Girard, Taylor, and Lafont 1989, Troelstra and Schwichtenberg 1996),
Kreisel-Goodman theory of constructions (Goodman 1970, Kreisel 1962,
Kreisel 1965), just to name a few. These
 interpretations have been very
instrumental for understanding intuitionistic logic, though none of them
qualifies as the BHK semantics.

Kleene realizability revealed a fundamental computational content of
formal intuitionistic derivations, however it is still quite different from the
intended BHK semantics. Kleene realizers are computational programs
rather then proofs. The predicate ‘r realizes F ’ is not decidable, which
leads to some serious deviations from intuitionistic logic. Kleene
realizability is not adequate for the intuitionistic propositional calculus 

.
 There are realizable propositional formulas not derivable in 
(Rose 1953).[8]

The Curry-Howard isomorphism transliterates natural derivations in 
to typed -terms thus providing a generic functional reading for logical
derivations. However the foundational value of this interpretation is
limited since, as proof objects, Curry-Howard -terms denote nothing but
derivations in
  itself and thus yield a circular provability semantics for
the latter.

An attempt to formalize the BHK semantics directly was made by Kreisel
in his theory of constructions (Kreisel 1962, Kreisel 1965). The original
variant of the theory was inconsistent; difficulties already occurred at the
propositional level. In (Goodman 1970) this was fixed by introducing a
stratification of constructions into levels, which ruined the BHK character

IPC IPC

IPC

λ

λ

IPC
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of this semantics. In particular, a proof of  was no longer a
construction that could be applied to any proof of 

2. Logical Awareness and Constant Specifications

Two examples in  are presented, showing modal theorems of
 , and
realizations for them. In the examples indices on constants have been
omitted.

Example 1. This shows how to build a justification of a conjunction from
justifications of the conjuncts. In traditional modal language, this principle
is formalized as . In
  this idea is expressed in the
more precise justification language.

1.  (propositional
axiom)
2. ) (from 1
by Axiom Internalization)
3. 
(from 2 by Application and Modus

Ponens)
4.  (from 3 by Application and

propositional
reasoning)
5.  (from 5 by propositional

reasoning)

The derived formula 5 contains the constant , which was introduced in
line 2, and the complete reading of the result of this derivation is:

Example 2. This example shows how to build a
 justification of a
disjunction from justifications of either of the
disjuncts. In the usual modal
language this is represented by . Here is the
corresponding
result in .

A → B

A

J K

□A ∧ □B → □(A ∧ B) J

A → (B → (A ∧ B))

c : (A → (B → (A ∧ B))

x : A → [c ⋅ x] : (B → (A ∧ B))

x : A → (y : B → [[c ⋅ x] ⋅ y] : (A ∧ B))

x : A ∧ y : B → [[c ⋅ x] ⋅ y] : (A ∧ B)

c

, given 
).

x : A ∧ y : B → [[c ⋅ x] ⋅ y] : (A ∧ B)

c : (A → (B → (A ∧ B))

□A ∨ □B → □(A ∨ B)

J
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1.  (classical logic)
2. 
(from 1 by Axiom Internalization)
3.  (from 2 by
 Application and Modus

Ponens)
4.  (by classical
logic)
5. 
(from 4 by Axiom Internalization)
6.  (from 5 by
Application and Modus Ponens)
7. [  +  (by Sum)
8. [  +  (by Sum)
9.  +  (from 3, 6, 7, and 8 by

propositional
reasoning)

The complete reading of the result of this derivation is:

3. Single-Agent Possible World Models for 

Here are two models in each of which  is not valid. 
 and  are atomic and  is a
justification variable.) It was pointed out

that a formula 
might fail at a possible world either because  is not
believable
there (it is false at some accessible world), or because  is not
an appropriate reason for . The two models illustrate both
versions.

First, consider the model  having a single state,
 , accessible to itself,
and with an evidence function such
that  is , for every formula
 .
In this model,  serves as‘universal’
evidence. Use a valuation such that 

 = 
and  = . Then one has  ⊩  but not- 
⊩ 
 because, even though  serves as
universal evidence, 

is not believable at  in
the Hintikka/Kripke sense because  is not true.

A → (A ∨ B)

a : (A → (A ∨ B))

x : A → [a ⋅ x] : (A ∨ B)

B → (A ∨ B)

b : (B → (A ∨ B))

y : B → [b ⋅ y] : (A ∨ B)

a ⋅ x] : (A ∨ B) → [a ⋅ x b ⋅ y] : (A ∨ B)

b ⋅ y] : (A ∨ B) → [a ⋅ x b ⋅ y] : (A ∨ B)

(x : A ∨ y : B) → [a ⋅ x b ⋅ y] : (A ∨ B)

, given 
 and .

(x : A ∨ y : B) → [a ⋅ x + b ⋅ y] : (A ∨ B)

a : (A → (A ∨ B)) b : (B → (A ∨ B))

J

x : P → x : (P ∧ Q)

(P Q x

t : X X

t

X

M Γ

E(x,Z) Γ Z

x

V(P) Γ V(Q) ∅ M, Γ x : P M, Γ

x : (P ∧ Q) x P ∧ Q

Γ Q

Sergei Artemov, Melvin Fitting, and Thomas Studer

Fall 2024 Edition 59



Next consider the model , again having a single state
  accessible to
itself. This time take  to be
 the mapping assigning  to every
propositional letter. But
also, set  = 
=  for , and
otherwise 
doesn’t matter for this example. Then of course both  and


 are believable at , but  ⊩  and not-  ⊩
 ,
the latter because  does not serve as
evidence for  at .

In Hintikka/Kripke models, believability and knowability are
 essentially
semantic notions, but the present treatment of evidence is
 more of a
syntactic nature. For example, the model 
 above also invalidates 

. At
 first glance this is surprising, since in any
standard logic of
knowledge or belief  is
valid. But, just
because  serves as evidence for , it need
not follow that it also serves as
evidence for . The
formulas are syntactically different, and effort is
needed to
 recognize that the later formula is a redundant version of the
former. To take this to an extreme, consider the formula 

 … , where
 the consequent has as many
conjuncts as there are elementary particles
 in the universe! In brief,
Hintikka/Kripke style knowledge is
 knowledge of propositions, but
justification terms
justify sentences.

4. Realization Theorems

Here is an example of an -derivation realized as an
 -derivation in the
style of the Realization
 theorem. There are two columns in the table
below. The first is a
 Hilbert-style -derivation of a modal formula 

. The second column
 displays corresponding
steps of an -derivation of a
formula:

with constant specification

N Γ

V Γ

E(x,P) Γ, E(x,Z) ∅ Z ≠ P

E P

P ∧ Q Γ N , Γ x : P N , Γ x : (P ∧ Q)

x P ∧ Q Γ

N

x : P → x : (P ∧ P)

□P → □(P ∧ P)

x P

P ∧ P

x : P → x : (P ∧ P∧ ∧P)

S4 LP

S4

□A ∨ □B → □(□A ∨ B)

LP

 + x : A ∨ y : B → (a⋅!x b ⋅ y) : (x : A ∨ B)
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Comparing derivations in
  and

Derivation in Derivation in 

1.
2.
3. !
4.
5.
5 . 
+ 

5 . 
+ 
6.
7.
8.
8 . 
+ 

8 . 
+ 
9.  + 

Extra steps , and  are needed in the
  case to reconcile
different internalized proofs of the
same formula:  and

. The resulting realization respects Skolem’s
idea that
negative occurrences of existential quantifiers (here over
proofs hidden in
the modality of provability) are realized by free
variables whereas positive
occurrences are realized by functions of
those variables.

Proof theory plays an important role in the study of Justification Logics.
Axiom systems we represented in this article, and a sequent calculus was
introduced in (Artemov 1995, Artemov 2001). It has the curious
disadvantage that it is cut free, but does not have the subformula property
—no version with the subformula property is known. More recently, other

.{a : (x : A → x : A ∨ B), b : (B → x : A ∨ B)}

S4 LP

S4 LP

□A → □A ∨ B x : A → x : A ∨ B

□(□A → □A ∨ B) a : (x : A → x : A ∨ B)

□□A → □(□A ∨ B) x : x : A → (a⋅!x) : (x : A ∨ B)

□A → □□A x : A →!x : x : A

□A → □(□A ∨ B) x : A → (a⋅!x) : (x : A ∨ B)
′ (a⋅!x) : (x : A ∨ B) → (a⋅!x

b ⋅ y) : (x : A ∨ B)
′′ x : A → (a⋅!x b ⋅ y) : (x : A ∨ B)

B → □A ∨ B B → x : A ∨ B

□(B → □A ∨ B) b : (B → x : A ∨ B)

□B → □(□A ∨ B) y : B → (b ⋅ y) : (x : A ∨ B)
′ (b ⋅ y) : (x : A ∨ B) → (a⋅!x

b ⋅ y) : (x : A ∨ B)
′′ y : B → (a⋅!x b ⋅ y) : (x : A ∨ B)

□A ∨ □B → □(□A ∨ B) x : A ∨ y : B → (a⋅!x
b ⋅ y) : (x : A ∨ B)

5′, 5′′, 8′ 8′′ LP

(a⋅!x) : (x : A ∨ B)

(b ⋅ y) : (x : A ∨ B)
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kinds of proof procedures for Justification Logics have been created.
Kurokawa uses hypersequents to provide a comprehensive proof-
theoretical treatment of major systems of Justification Logic, (Kurokawa
2009), including those which combine implicit and explicit knowledge.
These systems are notoriously hard to analyze and Kurokawa’s results
constitute a remarkable fundamental contribution to this area.

Realizations have been investigated for their own sake,
(Fitting 2009). The
basic results all are algorithmic in nature. For
example, in Modal Logic a
Replacement Theorem holds just as it does
 classically: if  is
provable in a normal modal logic
then so is  where  is a formula
and  is
 like  except that some subformula occurrence  has been
replaced with . Indeed this can be strengthened to establish
 that if 

 is provable, and  has
 a positive designated subformula
occurrence in , while
  replaces that occurrence with , then 
is provable. This does not carry over in a simple way to
 Justification
Logic. Roughly speaking, an occurrence of  in a
 formula  of
Justification Logic may be within the scope of
various justification terms,
and in  these will need to be
 ‘adjusted’ to take into account a
justification for . It turns out this is not simple, but an algorithm
for doing so has been developed, (Fitting 2006, Fitting 2009).

Here is another result having a similar proof. In a modal sequent calculus
argument a typical step is the following.

The notion of a realization easily extends from formulas to sequents.
Suppose both of the premise sequents above have realizations, and one
would like a realization for the consequent sequent. The problem is, the
two premise realizations may be quite different. Algorithmic machinery
for merging them has been developed that does exactly this.
 This

X ≡ X ′

F ≡ F ′ F

F ′ F X

X ′

X → X ′ X

F F ′ X ′ F → F ′

X F

F ′

X → X ′

S1 → S2,X S1 → S2,Y

S1 → S2,X ∧ Y
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algorithm, in turn, serves as part of a new algorithm for the Realization
Theorem itself.

Finally, all initial realization proofs were constructive and were
based on
some kind of cut-free proof system. But non-constructive,
 semantic
arguments have been developed, which allow the extension of
realization
machinery substantially. For instance, it is now known
that the family of
modal logics having justification counterparts is
 infinite. Artemov and
Fitting 2019 contains a detailed
investigation along these lines.

5. Multi-Agent Justification Models

To simplify the language, one can use the forgetful projection which
replaces explicit knowledge assertions  by
  where  stands for so-
called justified common knowledge
 modality. Modality  is a stronger
version of common
 knowledge:  states all agents share
 sufficient
evidence for . In a formal setting, in Kripke
models, , but not
necessarily
  (Artemov 2006).

Informally, the traditional common knowledge modality (Fagin, Halpern,
Moses, and Vardi 1995) is represented by the condition

whereas for the justified common knowledge operator  one has

Justified common knowledge has the same modal principles as
McCarthy’s
 common knowledge (McCarthy, Sato, Hayashi, and Igarishi
1978). In
 (Cubitt and Sugden 2003) a case is made that David Lewis’
version of
 common knowledge (more properly, belief) is not identified
with
 unlimited iteration of knowledge operators, but is much closer to

t : X JX J

J

JX

X JX → CX

CX → JX

 …
  …CX ⇔ X ∧ EX ∧ E 2X∧ ∧E nX∧

J

 …
  …JX ⇒ X ∧ EX ∧ E 2X∧ ∧E nX∧
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justified common knowledge. (See the encyclopedia article on Common
Knowledge). A good example of such a Lewis-McCarthy-Artemov
justified
 common knowledge assertion, , which is
 stronger than the
usual common
 knowledge, , is provided by situations
 following a
public announcement of  (Plaza 2007) after
which  holds at all states,
not only at reachable
states. Note that public announcements are the usual
means for
 attaining common knowledge, and they lead to justified
common
knowledge  rather than the usual common
knowledge .

The axiomatic description of justified common knowledge  is
significantly simpler than that of  . According to (Antonakos 2007), in
the standard
 epistemic scenarios, justified common knowledge  is
conservative with respect to the usual common knowledge  and hence
provides a lighter alternative to the latter.

6. Self-referentiality of Justifications

Let us consider an example which was suggested by the well-known
Moore’s paradox:

If  stands for it will rain, then a modal formalization is:

The Moore sentence  is easily satisfiable, hence consistent, e.g.,
whenever the weather forecast wrongly shows “no rain”. However, it is
impossible to know Moore’s sentence because

holds in any modal logic containing
  . Here is a derivation.

JX

CX

X X

J C

J

C

J

C

It will rain but I don’t believe that it will.

R

.M = R ∧ ¬□R

M

¬□M = ¬□(R ∧ ¬□R)

T
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1.  (logical axiom)
2.  (Necessitation)
3. , (from 2 by Distribution)
4.  (Factivity
in 
5.  (from 4 in Boolean logic)
6.  (from 3
and 5 in Boolean logic)

Furthermore, here is how this derivation is realized in
 .

1.  (logical
axiom)
2.  (Constant
Specification)
3.  (from 2 by Application)
4.  (Factivity)
5.  (from 4 by Boolean logic)
6.  (from 3 and 5 in
Boolean logic)

Note that Constant Specification in line 2 is self-referential.

Notes to Justification Logic

1.
 For better readability brackets ‘[’, ‘]’ will
 be used in terms, and
parentheses ‘(’, ‘)’ in
formulas. Both will be avoided when it is safe.

2.
 One could devise a formalization of the Red Barn Example in a
 bi-
modal language with distinct modalities for knowledge and belief.
However, it seems that such a resolution must involve reproducing
justification-tracking arguments in a way that obscures, rather than
reveals,
the truth. Such a bi-modal formalization would distinguish
  from [

 not because they have different reasons
(which reflects the true
epistemic structure of the problem), but
 rather because the former is
labelled ‘belief’ and the
latter ‘knowledge.’ But what if one needs to keep
track of
a larger number of different unrelated reasons? By introducing a
multiplicity of distinct modalities and then imposing various
assumptions

(R ∧ ¬□R) → R

□((R ∧ ¬□R) → R)

□(R ∧ ¬□R) → □R

□(R ∧ ¬□R) → (R ∧ ¬□R) T)

□(R ∧ ¬□R) → ¬□R

¬□(R ∧ ¬□R)

LP

(R ∧ ¬[c ⋅ x] : R) → R

c : ((R ∧ ¬[c ⋅ x] : R) → R)

x : (R ∧ ¬[c ⋅ x] : R) → [c ⋅ x] : R

x : (R ∧ ¬[c ⋅ x] : R) → (R ∧ ¬[c ⋅ x] : R)

x : (R ∧ ¬[c ⋅ x] : R) → ¬[c ⋅ x] : R

¬x : (R ∧ ¬[c ⋅ x] : R)

u : B

a ⋅ v] : B
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governing the inter-relationships between these
 modalities, one would
essentially end up with a reformulation of the
 language of Justification
Logic itself (with distinct terms replaced
 by distinct modalities). This
suggests that there may not be a
satisfactory ‘halfway point’ between the
modal language
and the language of Justification Logic, at least inasmuch
as one
 tries to capture the essential structure of examples involving the
deductive nature of knowledge.

3.
In our notation,  can be assigned the name
 . However, in virtue
of the fundamental role played by
  in the history of Justification Logic,
the name
  has been preserved for this system.

4.
To be precise, one must substitute  for  everywhere in
  and  .

5.
Which was true back in 1912. There is a linguistical problem with
this
example. The correct spelling of this person’s last name is
 Campbell-
Bannerman; strictly speaking, this name begins with a
‘C.’

6.
Which was false in 1912.

7.
 Here a possible objection is ignored that the justifications
 ‘the late
Prime Minister was Sir Henry Campbell Bannerman’
 and ‘Mr. Balfour
was the late Prime Minister’ are mutually
exclusive since there could be
only one Prime Minister at a time. If
 the reader is not comfortable with
this, a slight modification of
Russell’s example in which ‘Prime Minister’
is
 replaced by ‘member of the Cabinet’ can be used instead.
 The
compatibility concern then disappears since justifications
 ‘  was the
member of the late Cabinet’ and
‘  was the member of the late Cabinet’
with different
  and  are not necessarily incompatible.

LP JT4

LP

LP

c x s t

X

Y

X Y
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Notes to the Supplement

8.
Kleene himself denied any connection of his realizability with the
BHK
interpretation.
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