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Abstract. Recently, much work has been carried out to study simplicial
interpretations of modal logic. While notions of (distributed) knowledge
have been well investigated in this context, it has been open how to
model belief in simplicial models. We introduce polychromatic simplicial
complexes, which naturally impose a plausibility relation on states. From
this, we can define various notions of belief.
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1 Introduction

Due to the success of applying methods from combinatorial topology to dis-
tributed computing [19], the study of simplicial interpretations for modal logic
is currently thriving [16, 17, 21, 11]. At its core lies the epistemic interpretation
of simplicial complexes of various kinds. Let V be a set of vertices. Each vertex
corresponds to a local state of an agent, and we say that this vertex is of that
agent’s color. A simplicial complex (S,V) is a pair where S is a set of non-empty
subsets of V that is closed under set inclusion. Vertices that belong to the same
set must be of different colors, and, in the simplest case, maximal elements of
S represent global states. An agent a cannot distinguish two global states if
its local state is included in both. Hence, simplicial complexes offer sufficient
structure for an epistemic interpretation.

The simplicial complex C1 depicted in Figure 1 consists of two worlds X and
Y (represented by the two solid triangles), each containing the local states of all
three agents. Agents a and b have the same local state in X and Y , whereas c’s
local state differs in the two global states. Therefore, a and b cannot distinguish
between X and Y , but c can. That is, a and b always deem both states as
possible, while c only considers the actual state. This concept can be extended
to groups of agents. In C1, a and b together cannot distinguish between X and
Y because they cannot do so on their own, but a and c can due to c being able
to tell X and Y apart. Lastly, we say that the agents a, b, and c are alive in X
and Y because they both contain vertices with their colors.

An agent a knows a formula φ in state X if and only if φ is true in all states
that a considers as possible when in X. Consequently, if an agent is alive and
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knows φ in state X, then φ must be true in X. Classical distributed knowl-
edge [18] can be interpreted similarly. A group G knows φ in a state X if and
only if φ is true in all states that G cannot distinguish from X.

b

a

c cX YC1 :

Fig. 1. A simplicial complex C1 in which the agents a and b cannot distinguish between
the worlds X and Y .

While (distributed) knowledge has been studied extensively in this context, it
has been open, see [10, Section 4.3], how to model belief on simplicial structures.
Unlike knowledge, an agent believing φ does not imply that φ is true in the
actual global state. At first glance, as done in other models, this behavior can be
achieved by dropping the requirement that agents must consider the actual state
as possible. However, in the simplicial case, an alive agent will always consider
the actual global state as possible because it contains its local state. Hence, this
property cannot be dropped.

One way of overcoming this issue is to introduce belief functions [11]. An
agent’s belief function fa maps a state X, in which a is alive, to another state Y ,
in which a is also present. An agent a believes a formula φ in X if and only if it
knows φ in fa(X). Hence, belief becomes knowledge if fa(X) = X. In the model
C2 shown in Figure 2, X is mapped to Y and a believes that c is not alive in the
current global state, i.e., it falsely believes that c no longer exists. Disadvantages
of this approach are that i) belief does not take the topology of the model into
account and ii) the principle of knowledge-yields-belief, i.e., knowing φ implies
believing φ, does not have a meaningful interpretation.
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Fig. 2. Despite being in X, agent a thinks that the actual world is Y . Thus, a wrongly
believes that c died.



Simplicial Belief 3

In this paper, we present and interpret polychromatic simplicial complexes,
i.e., complexes in which adjacent vertices may be of the same color, as simplicial
models. Such models admit a notion of belief that satisfies the two conditions
mentioned above. The belief studied in this work is based on the plausibility of
states rather than on their possibility alone. That is, an agent believes a formula
φ if and only if it is true in all states that it deems plausible enough. Since the
actual global state need not be among them, the agent’s beliefs might be wrong.

We start by defining a plausibility relation between the states based on the
multiplicity of color within a state. If the color of an agent a has a lower or
equal multiplicity in a state X than in a state Y , then a considers X to be at
least as plausible as Y . If vertices are interpreted as belief states, then a possible
reading of our relation is that an agent a considers worlds with fewer doxastic
alternatives as more plausible. Since this relation is a wellfounded preorder, we
can use the machinery of plausibility models [3, 4] to define various notions of
belief such as safe belief and most plausible belief.

Most plausible belief is a useful notion of belief. An agent a most plausibly
believes φ if and only if φ is true in the worlds that it considers to be the most
plausible ones. This kind of belief is appropriate for reasoning about distributed
computing [7], where agents act based on guarantees that hold true with over-
whelming probability, i.e., the states in which they hold are the most plausible
ones. For example, when communicating over authenticated links, it is the most
plausible case that if Alice receives a message m from Bob over such a link, then
m was actually sent by Bob and not by an imposter. Our simplicial models can
model this kind of belief while taking the topology of the model into account.
The complex C3 in Figure 3 depicts the same situation as C2 but without a belief
function. When in X, a considers Y more plausible than X because its multi-
plicity in X is 2 and only 1 in Y . In this case, a considers Y the most plausible
world. Further, since c is not present in Y , a believes that c died. Thus, an
agent’s most plausible belief can be false. It is also straightforward to verify that
this notion of belief satisfies the principle of knowledge-yields-belief.

c

ab

a

b
X Y

C3 :

Fig. 3. A polychromatic simplicial complex that models the same situation as C2 but
without a belief function.
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We close this introduction by briefly comparing our method to another, yet
unexplored, approach for modeling belief on simplicial structures mentioned
in [10, Section 4.3.3]. The idea is to impose a distance measure by allowing edges
between vertices with the same color. It is important, however, that these edges
are not epistemically interpreted. The a-distance between two global states X
and Y is the length of the shortest a-path between them. The shorter the path
to a global state, the more plausible it becomes. For example, consider C4 in
Figure 4. When in X, a considers Y more plausible than Z. While this interpre-
tation takes topological information into account, it does not model false beliefs
because agents always consider the actual world as the most plausible one.

a

bc c
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b

a

ZYXC4 :

Fig. 4. Unicolored edges are used to represent a distance between worlds. For example,
when in X, a considers Y to be more plausible than Z because the a-path from X to
Y is shorter than the a-path from X to Z.

We give an overview of the theory of simplicial models in Section 2. In Sec-
tion 3, we introduce polychromatic models and present different notions of belief
on them. Next, we analyze in Section 4 knowledge and belief gain in our models.
In Section 5, we discuss other possible semantics for our models, and, lastly, we
conclude our work in Section 6.

2 Simplicial Knowledge

We quickly recall the standard definitions for distributed knowledge on simpli-
cial complexes [16, 17, 11]. In the subsequent section, we will extend them to
incorporate notions of belief.

Let Ag be the set of finitely many agents, and let Prop be a countable set of
atomic propositions. We define the language of knowledge LK for G ⊆ Ag and
p ∈ Prop inductively by the following grammar:

φ ::= p | ¬φ | φ ∧ φ | [∼]Gφ

The remaining Boolean connectives are defined as usual. In particular, we set
φ∨ψ := ¬(¬φ∧¬ψ) and ⊥ := p∧¬p for some fixed p ∈ Prop. We write alive(G)
for ¬[∼]G⊥ and dead(G) for [∼]G⊥.
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Definition 1. Let V be a set of vertices. C = (S,V) with S ⊆ Pow(V) \ {∅} is
called a simplicial complex if

for each X ∈ S and each ∅ 6= Y ⊆ X, we have Y ∈ S.

Remark 1. The standard definition of a simplicial complex (cf. [19]) requires that
the singleton of each vertex is an element of S. Not doing so is purely cosmetic.

We call the elements of S faces. A face that is maximal under inclusion is
called a facet. We denote the set of facets of C by F(C). A coloring is a mapping
χ : V → Ag. A coloring is proper if it assigns a different value to each vertex
within a face. We use χ(U) for the set {χ(u) | u ∈ U}.

Definition 2. Let C = (S,V) be a simplicial complex. A simplicial model is a
quadruple C = (C,χ,W, `) where

1. C is a simplicial complex;
2. χ : V → Ag is a proper coloring;
3. F(C) ⊆W ⊆ S is a set of worlds;
4. ` :W → Pow(Prop) is a valuation.

Remark 2. Definition 2 is not completely standard and is studied by Goubault
et al. [15]. Moreover, it is worth mentioning that the valuation ` in Definition 2
assigns propositions to arbitrary faces instead of vertices only.

Given a simplicial model, a group of agents G ⊆ Ag cannot distinguish two
worlds X,Y ∈W , denoted by X ∼G Y , if and only if G ⊆ χ(X∩Y ). We call ∼G
the epistemic indistinguishability relation. If we need to indicate the simplicial
complex C of which we consider the relation X ∼G Y , we use the notation
X ∼CG Y . If G contains only a single agent a, we write X ∼a Y and [∼]a instead
of X ∼{a} Y and [∼]{a}, respectively.

It is worth noting that [∼]G is the usual notion of distributed knowledge
of a group G of agents, which is semantically given by the intersection of the
individual indistinguishability relations of the group members (cf. [18]).

Definition 3. For a simplicial model C = (C,W,χ, `), a world X ∈ W , and a
formula φ ∈ LK, we define the relation C, X  φ inductively by

C, X  p iff p ∈ `(X)

C, X  ¬φ iff C, X 6 φ
C, X  φ ∧ ψ iff C, X  φ and C, X  ψ
C, X  [∼]Gφ iff X ∼G Y implies C, Y  φ for all Y ∈W.

We say that agent a is alive in a world X if a ∈ χ(X). The set of worlds in
which a group G ⊆ Ag is alive is defined as

AliveC(G) = {X ∈W | G ⊆ χ(X)}.

It is standard to show that ∼G is a partial equivalence relation. We have the
following lemma.
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Lemma 1. Let C = (C,χ,W, `) be a simplicial model. For each G ⊆ Ag, the
relation ∼G is an equivalence relation on AliveC(G) and empty otherwise.

3 Simplicial Belief

We now drop the requirement that the coloring of a simplicial model must be
proper. The resulting models are called polychromatic. We will define a well-
founded preorder on the states of a polychromatic model, which will serve as a
plausibility relation [3, 4]. This makes it possible to interpret various notions of
belief on simplicial models.

It is straightforward to verify that Lemma 1 does not hold for polychromatic
models because ∼G need not be transitive. Indeed, consider the set of vertices
{0, 1, 2, 3} and a model that consists of the worlds

X := {0, 1}, Y := {1, 2}, and Z = {2, 3}

with a coloring χ that assigns the same agent a to all vertices. We find that
X ∼a Y and Y ∼a Z, but not X ∼a Z. In order to re-establish transitivity of
∼G, we must require that for any three worlds X,Y, Z ∈ W and any group of
agents G ⊆ Ag:

G ⊆ χ(X ∩ Y ) and G ⊆ χ(Y ∩ Z) implies G ⊆ χ(X ∩ Z). (?)

Definition 4. A polychromatic model is a simplicial model where:

1. the coloring is not required to be proper;
2. condition (?) holds.

Requiring condition (?) is like requiring a transitive accessibility relation in
certain Kripke models.

The multiplicity, see Definition 5, of a color within a face induces for each
agent a a wellfounded relation ≤a on worlds. We call this the (a priori) plausi-
bility relation.

Definition 5. Let (C,χ,W, `) be a polychromatic model. We define the multi-
plicity of a ∈ Ag in a world X by

ma(X) = |{v ∈ X | χ(v) = a}|

where | · | denotes the cardinality of a set. Note that if agent a is alive in a world
X, then ma(X) ≥ 1. For X,Y ∈W and a ∈ Ag, we write

X ≤a Y iff ma(X) ≤ ma(Y ).

Next, we introduce a local plausibility relation

Ea := ≤a ∩ ∼a,
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which captures the agent’s plausibility relation at a given state. Further, we
write

X ≥a Y iff ma(X) ≥ ma(Y )

and we useDa andCa in the obvious way. The following lemma shows that the in-
distinguishability relation can be given in terms of the local plausibility relation.

Lemma 2. ∼a= Ea ∪Da.

Proof. Observing that ≤a is strongly connected and unfolding the definition
yields

∼a= (≤a ∪ ≥a)∩ ∼a= (≤a ∩ ∼a) ∪ (≥a ∩ ∼a) = Ea ∪Da.

From the relation Da, we get a corresponding modal operator [D]a, which
is referred to in the literature as safe belief [4] (sometimes also as defeasible
knowledge [2]). Our language of knowledge and belief LKB extends LK by the
modal operator [D]a for each agent a ∈ Ag. It is inductively defined by as follows:

φ ::= p | ¬φ | φ ∧ φ | [∼]Gφ | [D]aφ

where p ∈ Prop and G ⊆ Ag. As usual, the dual of safe belief is defined as
〈D〉aϕ ≡ ¬[D]a¬ϕ.

Definition 6. For a polychromatic model C = (C,χ,W, `), a world X ∈W , and
a formula φ ∈ LKB, we define the relation C, X  φ inductively by

C, X  p iff p ∈ `(X)

C, X  ¬φ iff C, X 6 φ
C, X  φ ∧ ψ iff C, X  φ and C, X  ψ
C, X  [∼]Gφ iff X ∼G Y implies C, Y  φ, for all Y ∈W
C, X  [D]aφ iff X Da Y implies C, Y  φ, for all Y ∈W.

The [D]a-modality satisfies the S4.2 principles for alive agents.

Lemma 3. The following formulas are valid:

1. [D]a(φ→ ψ)→ ([D]aφ→ [D]aψ);
2. alive(a)→ ([D]aφ→ φ);
3. [D]aφ→ [D]a[D]aφ;
4. 〈D〉a[D]aφ→ [D]a〈D〉aφ.

Proof. We will only show the last claim. Assume

C, X  〈D〉a[D]aφ.

There exists Z with X Da Z and

C, Z  [D]aφ. (1)
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From X Da Z we get that a is alive in Z and thus Z Da Z. Therefore, by (1)

C, Z  φ. (2)

Let Y be arbitrary with X Da Y . By (?), we find Y ∼a Z. Thus we get by
Lemma 2, that ZDaY or Y DaZ. In the first case, we use (1) to obtain C, Y  φ.
Further we get Y Da Y from X Da Y , and thus

C, Y  〈D〉aφ. (3)

In the second case, (3) follows immediately from (2). Since Y was arbitrary with
X Da Y , (3) implies C, X  [D]a〈D〉aφ.

As usual with plausibility models, not only can we define safe belief but also
other notions of belief. We start by defining the set of most plausible worlds.

Definition 7. Let C = (C,χ,W, `) be a polychromatic model. For X ∈ W , we
define

MinEa
(X) = {Y ∈W | Y ∼a X and @Z ∈W.Z Ca Y }.

Observe that, in general, since ≤a is wellfounded, MinEa
(X) 6= ∅ if agent a

is alive in the world X.
The model C5 given in Figure 5 shows a situation with two minimal worlds.

Namely, we have Y, Z ∈ MinEa(X). Further, the following relations hold: Y Ca X,
Z Ca X, Z Ea Y , and Y Ea Z.

a

ab b

b
C5 :

Y

X
Z

Fig. 5. A polychromatic model with two minimal worlds.

The following lemma about minimal worlds will be useful.

Lemma 4. Let C = (C,χ,W, `) be a polychromatic model, X ∈W , and Y EaX.
For each Z ∈ MinEa

(X), we have Z Ea Y .

Proof. From Y Ea X we get X ∼a Y . Let Z ∈ MinEa(X). By definition, this
means

@V ∈W.V Ca Z (4)

and X ∼a Z. Since ∼a is a partial equivalence relation, we get Z ∼a Y . Suppose
towards a contradiction that Z Ea Y does not hold. Since Z ∼a Y holds, we
must have Z �a Y and thus Y <a Z. Therefore, Y Ca Z. This contradicts (4),
and we conclude Z Ea Y .
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In the above lemma, we can let Y be X. Then we obtain the following in-
stance:

Z ∈ MinEa
(X) implies Z Ea X. (5)

We now include a new modality Ba for each agent a in our language LKB. We
extend the truth definition for LKB as follows.

Definition 8. For a polychromatic model C = (C,χ,W, `), a world X ∈W , and
a formula φ ∈ LKB, we define

C, X  Baϕ iff Y ∈ MinEa(X) implies C, Y  ϕ for all Y ∈W.

The modality Ba models agent a’s (most plausible) belief. It is well-known
that Ba can be expressed in terms of the [D]a-modality [4, 22]. In our setting, we
have the following theorem.

Theorem 1. Let C = (C,χ,W, `) be a polychromatic model, a an agent, and
X ∈W such that a is alive in X. We find that

C, X  Baϕ if and only if C, X  〈D〉a[D]aϕ.

Proof. For the direction from right to left, we assume C, X  〈D〉a[D]aϕ. Thus,
there exists Y with X Da Y and C, Y  [D]aϕ. Now consider an arbitrary
Z ∈ MinEa

(X). By Lemma 4 we find Y Da Z and, therefore, C, Z  ϕ. This
yields C, X  Baϕ.

For the direction from left to right, we have X ∼a X since agent a is alive.
Thus MinEa(X) is non-empty and we let Y ∈ MinEa(X). By (5), we obtain
Y Ea X. It remains to show C, Y  [D]aϕ. Let Z ∈ W be such that Z Ea Y .
Then Z ∼a X by transitivity of ∼a. Now we find Z ∈ MinEa

(X), for otherwise,
we would find V ∈ W with V Ca Z, which yields V Ca Y and thus contradicts
Y ∈ MinEa

(X). From Z ∈ MinEa
(X) and the assumption C, X  Baϕ, we get

C, Z  ϕ, which concludes the proof.

Remark 3. A consequence of this theorem is that the properties of the Ba-
modality follow from properties of [D]a such as the ones given in Lemma 3.
For instance, we find that

Baφ ∧ Baψ → Ba(φ ∧ ψ).

is valid.

Our model satisfies the knowledge yields belief principle. In particular, we
have the following lemma.

Lemma 5. Let C = (C,χ,W, `) be a polychromatic model and X ∈W . For any
agent a and any formula ϕ, we have

C, X  [∼]aϕ→ [D]aϕ and C, X  [D]aϕ→ Baϕ.
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Proof. For the first claim, assume

C, X  [∼]aϕ. (6)

Let X Da Y , i.e., X ∼a Y and X ≥a Y . By (6) we immediately get C, Y  ϕ
and hence, C, X  [D]aϕ.

For the second claim, assume

C, X  [D]aϕ. (7)

Let Y ∈ MinEa(X) be arbitrary. Using (5), we obtain Y Ea X. Now C, Y  ϕ
follows immediately from (7), which yields C, X  Baϕ.

As usual with preference-based semantics, our models are non-monotone.
That is, agents may drop their beliefs when learning new information.

Example 1. Consider the set V = {1, 2, 3, 4} and let C = (S,V) and Cψ = (Sψ,V)
be simplicial complexes given by

S = (Pow({1, 2, 3}) ∪ Pow({3, 4})) \ {∅} and Sψ = Pow({1, 2, 3}) \ {∅}.

Further, let X = {1, 2, 3} and Y = {3, 4}. We define the models

C = (C,χ, {X,Y }, `}) and Cψ = (Cψ, χ, {X}, `ψ).

The coloring χ is defined as follows

1. χ(1) = χ(3) = a;
2. χ(2) = χ(4) = b.

Figure 6 shows the colored complexes. We choose the valuation ` such that for
some propositional formulas ψ, φ ∈ LKB:

C, X  ¬φ ∧ ψ and C, Y  φ ∧ ¬ψ

and we define `ψ(X) = `(X). The model Cψ represents the situation after the
agents in C learn that ψ is true. That is, it is the same as C but without the
worlds where ψ is false. We observe that

C, X  Baφ and Cψ, X 6 Baφ.

Hence, a only believes φ in X before it learns ψ. This is because removing worlds
from C can result in a new world becoming a most plausible world.

A model is called proper if different worlds can be distinguished by at least
one agent. Standard simplicial models are proper (cf. [15]). Formally, this is
expressed as

alive(G) ∧ dead(Gc) ∧ ϕ→ [∼]G(dead(Gc)→ ϕ) (8)

being valid, where Gc stands for the complement of G. Lemma 6 shows that this
is no longer true for polychromatic models.
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a

ab b

a

ab

C : Cψ :

Y

X X

Fig. 6. The polychromatic complex Cψ represents the state of affairs after the agents
in C learn that ψ is true.

Lemma 6. Polychromatic models are not proper, i.e. (8) is not valid.

Proof. Consider the following counter-example. Let C = (S,V) be the simplicial
complex given by

V = {1, 2, 3} and S = Pow(V) \ {∅}.

Let a, b be agents. We set

χ(1) := χ(2) := a and χ(3) := b.

The set of possible worlds W contains only the two worlds X := {1, 2, 3} and
Y := {1, 3}. The valuation is such that `(X) := {p}, and `(Y ) := ∅.

Let C := (C,χ,W, `). For G = {a, b}, we find that

C, X  alive(G) ∧ dead(Gc) ∧ p.

However, we have X ∼G Y and C, Y  dead(Gc) ∧ ¬p. Hence

C, X 6 [∼]G(dead(Gc)→ p).

Therefore, (8) is not valid on polychromatic models.

4 Knowledge Gain

An important result for epistemic simplicial models is that agents cannot gain
new knowledge along morphisms of simplicial models. This property is crucial
in distributed computing to show that certain morphisms do not exist, which
implies that certain computation tasks are not solvable.

We adapt the notion of morphism from [16] to the setting where models
contain a set of worlds. The fact that our models are polychromatic does not
matter for the definition of morphism. As usual, given a function f : U → V
and a set W ⊆ U , we let

f(W ) := {f(x) | x ∈W}.

Definition 9. Let C = (S,V) and C ′ = (S′,V ′) be two simplicial complexes. A
simplicial map from C to C ′ is a function f : V → V ′ such that if X ∈ S then
f(X) ∈ S′.
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Definition 10. Let C = (S,V) and C ′ = (S′,V ′) be two simplicial complexes
and let C = (C,χ,W, `) and C′ = (C ′, χ′,W ′, `′) be two polychromatic models. A
morphism from C to C′ is a function f such that

1. f is a simplicial map from C to C ′;
2. χ′(f(v)) = χ(v) for all v ∈ V;
3. f(X) ∈W ′ for all X ∈W ;
4. `′(f(X)) = `(X) for all X ∈W .

Morphisms respect the indistinguishability relation. We have the following
lemma.

Lemma 7. Let C = (S,V) and C ′ = (S′,V ′) be two simplicial complexes and
let C = (C,χ,W, `) and C′ = (C ′, χ′,W ′, `′) be two polychromatic models and f
be a morphism from C to C′. For X,Y ∈W we have

X ∼CG Y implies f(X) ∼C
′

G f(Y ).

Proof. Assume G ⊆ χ(X ∩ Y ) and let a be an element of G. There exists v ∈ V
with v ∈ X, v ∈ Y , and χ(v) = a. We find that f(v) ∈ f(X), f(v) ∈ f(Y ), and
χ′(f(v)) = a. Hence, a ∈ χ′(f(X) ∩ f(Y )).

The positive formulas are the formulas of LK where the operator [∼]G occurs
only in positive positions. Formally, we use the following definition.

Definition 11. We consider the following grammar:

φ ::= p | ¬φ | φ ∧ φ
ψ ::= φ | ψ ∧ ψ | ψ ∨ ψ | [∼]Gψ

where p ∈ Prop and G ⊆ Ag. Formulas given by ψ are called positive formulas.

The result about no knowledge gain is standard [16]. Note that we are in a
setting where agents may crash. However, since we assign atomic variables to
the worlds (and not the local states of the agents), we can employ the usual
formulation of positive formulas in the following theorem. Also, the fact that we
have polychromatic models does not matter.

Theorem 2. Let C = (C,χ,W, `) and C′ = (C ′, χ′,W ′, `′) be two polychromatic
models and f be a morphism from C to C′. Further, let ψ be a positive formula.
We find that

C′, f(X)  ψ implies C, X  ψ

for all X ∈W .

Proof. First we show that for a formula given by φ according to Definition 11,
we have

C′, f(X)  φ iff C, X  φ (9)

for all X ∈W . We proceed by induction on the structure of φ and distinguish:
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1. φ is an atomic proposition p. Since f is a morphism, we have `′(f(X)) = `(X).
Thus C, f(X)  p iff C, X  p.

2. φ is a negation or a conjunction. The claim follows immediately by I.H.

Now we proceed by induction on the structure of ψ (acc. to Def. 11) and
assume C′, f(X)  ψ. We distinguish the following cases:

1. ψ is a formula φ (according to Definition 11). The claim follows from (9).
2. ψ is a conjunction or a disjunction. The claim follows immediately by the

induction hypothesis.
3. ψ is of the form [∼]Gψ′. From C′, f(X)  [∼]Gψ′ we obtain that f(X) ∼C′G Y

implies C′, Y  ψ′ for all Y ∈W ′.
Let Z ∈ W be such that X ∼CG Z. Since f is a morphism, we find by
Lemma 7 that

f(X) ∼C
′

G f(Z) and f(Z) ∈W ′.
Thus, C′, f(Z)  ψ′. By I.H., we find C, Z  ψ′. Since Z ∈ W was arbitrary
with X ∼CG Z, we conclude C, X  [∼]Gψ′.

The previous theorem only holds for knowledge but not for belief. That is,
the operator [D]a cannot be included in the class of positive formulas. We have
the following lemma.

Lemma 8. There are two polychromatic models C and C′, a morphism f from
C to C′ and a world X of C such that for some agent a and p ∈ Prop,

C′, f(X)  [D]ap but C, X 6 [D]ap.

Proof. Consider the set V = {1, 2, 3}. We let a be an agent and set

χ(1) := χ(2) := χ(3) := a.

We let S := {{1, 2}, {2, 3}, {1}, {2}, {3}} and S′ := {{1, 2}, {1}, {2}}. Hence
C = (S,V) and C ′ = (S′,V) are simplicial complexes. We let X := {1, 2},
Y := {2, 3}, and Z := {2}. Further, we set

W := {X,Y }, `(X) := ∅ and `(Y ) := {p}

and
W ′ := {X,Z}, `′(X) := ∅ and `′(Z) := {p}.

We define the polychromatic models

C := (C,χ,W, `) and C′ := (C ′, χ,W ′, `′)

and let f be such that f(1) = 1, f(2) = 2, and f(3) = 2. Obviously, f is a
morphism from C to C′ and we have f(Y ) = Z. Finally, we note that

C′, f(Y )  [D]ap but C, Y 6 [D]ap.

Besides the statement that belief gain is possible, this lemma could also be
interpreted in such a way that condition (?) is not strong enough or that we
need a different notion of morphism, see also the discussion about simplicial sets
in the next section.
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5 Alternative Formalizations

The important feature of our approach to model belief with simplicial models
is that agents are assigned a multiplicity within a world. Polychromatic models
achieve this by allowing several vertices to represent the same agent. We have
chosen this approach because it has the advantages of being very close to the
original epistemic interpretation of simplicial complexes and having a simple ge-
ometric interpretation. Compared to [15], only the constraint of unique colors
within a world has been relaxed. However, to guarantee that the indistinguisha-
bility relation is a partial equivalence relation, we have to impose condition (?)
on polychromatic models.

In this section, we present two alternative approaches to belief in simplicial
models that are based on the idea of having repeated vertices instead of having
several vertices with the same color. In these settings, the vertices of a world all
have different colors, and thus condition (?) is not needed.

We will only sketch the basic ideas and leave an elaborate presentation for
future work. The first approach consists of using a version of simplicial complex
that is based on multisets instead of sets. One could use the following definitions.

Let V be a set of vertices. A multiset over V is a function M : V → N. The
empty multi-set ∅ denotes the constant 0-function. A multiset N is a subset
of a multiset M , in symbols as usual N ⊆ M , if we have N(v) ≤ M(v) for
all v ∈ V. The support of a multiset M is given by the set of its elements.,
i.e. supp(M) := {v | M(v) > 0}.

Definition 12. C = (S,V) with S being a set of multisets over V is called a
multi-simplicial complex if

1. S does not contain the empty set;
2. for each X ∈ S and each ∅ 6= Y ⊆ X, we have Y ∈ S.

Amulti-simplicial model is then defined like a simplicial model where a multi-
simplicial complex is used instead of a simplicial complex. Since a world in a
multi-simplicial model is a multiset, we can define the multiplicity of an agent a
in a world X by

ma(X) :=

{
X(v) if there exists v with χ(v) = a and X(v) > 0,
0 otherwise.

Note that by the definition of multi-simplicial model, where the coloring must
be proper,

there is at most one v ∈ V with χ(v) = a and X(v) > 0. (10)

Hence, ma(X) is well-defined.
We can employ the usual indistinguishability relation if we use the support

of the worlds, meaning we consider the worlds as sets instead of multisets. For
a group of agents G, we define

X ∼G Y iff G ⊆ χ(supp(X) ∩ supp(Y ))
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Using (10), we immediately find that the so-defined relation ∼G is transitive.
Thus, we do not need to additionally impose a condition like (?). The disadvan-
tage of multi-simplicial models is that they do not have a topological interpre-
tation.

The second alternative approach, which does have a natural topological in-
terpretation, is to work with simplicial sets, see, e.g. [12] for an introduction.
For our very informal discussion here, it is sufficient to think of simplicial sets
as simplices that may contain repeated vertices. Hence, the set of worlds of a
simplicial set model may contain simplices as well as simplices with repeated
vertices, which are called degenerate simplices.

It is a standard result [12, Prop. 4.8] that if Y is a degenerate simplex, then
there is a unique non-degenerate simplex X such that Y = si1 · · · sikX for some
collection of degeneracy maps si1 , . . . , sik . Here, a degeneracy map creates one
copy of a vertex. Given a degenerate simplex Y , we denote the unique non-
degenerate simplex X of the above result by nds(Y ). If Y is a non-degenerate
simplex, we set nds(Y ) := Y .

Using this setting, we can define the indistinguishability relation for simplicial
set models by

X ∼G Y iff G ⊆ χ(nds(X) ∩ nds(Y )).

As before, ∼G is transitive, and condition (?) is not needed. Moreover, we can
define the multiplicity of a vertex v in a world Y as 1 plus the number of copies
of v that the degeneracy maps introduce in the construction of Y from nds(Y ).

Note that we have to be careful when we move from polychromatic models
to simplicial set models. One of the reasons is that we have different notions
of morphisms for the two models. The notion of morphism for polychromatic
models (Definition 10) is based on simplicial maps that preserve the color. How-
ever, the multiplicity of an agent need not be preserved along morphisms for
polychromatic models. The situation is different for simplicial set models. If we
take the notion of morphism from simplicial sets and require that the color is
preserved, then the multiplicity of an agent will also be preserved.

So far, simplicial sets have not been considered models for epistemic logic.
However, we want to mention that semi-simplicial sets, which lie between sim-
plicial complexes and simplicial sets, have been used to model novel notions of
group knowledge [9, 14].

6 Conclusion

We presented the first interpretation of belief on simplicial models that depends
only on the topological structure without requiring additional machinery like
belief functions. Our approach consists of dropping the requirement that the
coloring must be proper and using the multiplicity of color within a face as an
inverted plausibility measure.

The study of polychromatic models is still in its infancy. This paper presents
first definitions, initial results, and key differences to simplical models such as
the observations about non-proper models and belief gain.
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Although we included a notion of group knowledge in our logic, we only con-
sidered individual belief. Obviously, notions of group belief provide an interesting
topic for future research. A first definition could be

X ≤G Y if and only if min{ma(X) | a ∈ G} ≤ min{ma(Y ) | a ∈ G}

and then define the interpretation of the modalities [D]G and BG as in the indi-
vidual case. Some principles of this notion of group belief are immediate, e.g. that
group belief does not imply belief of subgroups (or individual belief). However,
a detailed analysis of this approach should be performed and its relationship to
existing approaches, e.g. [13, 20], should be studied.

Another possible research direction for polychromatic models is to interpret
them as a simplicial neighborhood semantics [10]. One approach would be to
consider models in which simplices are either colored properly or unicolored. In
Figure 7, for instance, the simplices X0, X1, Y0, Y1 are properly colored (each
vertex has a different color) whereas Z is unicolored (every vertex has the same
color).

a ab

c

c

b

c

b

Z

X0 Y0

Y1X1

Fig. 7. Polychromatic complexes in which simplices are either properly colored or uni-
colored might be used for developing a simplicial neighborhood semantics.

Unicolored simplices can be used to define a neighborhood structure. The
simplex X0 has two a-neighborhoods {X0, X1} and {Y0, Y1} because agent a
can reach Y0 via the unicolored edge Z. It is straightforward to see that such
neighborhoods will never intersect in a. The interpretation of knowledge is then
standard: agent a knows ϕ if there is an a-neighborhood in which ϕ is true in
all worlds.

Last but not least, let us mention that recently, a variant of topological se-
mantics was introduced for polyhedra [1, 5, 6]. It will be interesting to investigate
the similarities and differences between simplicial semantics and polyhedral se-
mantics for modal logic.
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