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Abstract

We introduce a new semantics for justification logic based on subset
relations. Instead of using the established and more symbolic interpre-
tation of justifications, we model justifications as sets of possible worlds.
We introduce a new justification logic that is sound and complete with
respect to our semantics. Moreover, we present another variant of our
semantics that corresponds to traditional justification logic.

These types of models offer us a versatile tool to work with justifi-
cations, e.g. by extending them with a probability measure to capture
uncertain justifications. Following this strategy we will show that they
subsume Artemov’s approach to aggregating probabilistic evidence.

1 Introduction

Justification logic is a variant of modal logic that includes terms representing
explicit evidence. A formula of the form t : A means that t justifies A (or t
represents evidence for A, or t is a proof of A). Justification logic has been
introduced by Artemov [2, 3] to give a classical provability interpretation to S4.
Later it turned out that this approach is not only useful in proof theory [3, 15]
but also in epistemic logic [4, 5, 11, 12]. For a general overview on justification
logic, we refer to [7, 8, 16].

There are various kinds of semantics available for justification logic. Most
of them interpret justification terms in a symbolic way. In provability interpre-
tations [3, 15], terms represent (codes of) proofs in formal system like Peano
arithmetic. In Mkrtychev models [17], which are used to obtain decidability,
terms are represented as sets of formulas. In Fitting models [13], the evidence
relation maps pairs of terms and possible worlds to sets of formulas. In modular
models [6, 14], the logical type a justification is a set of formulas, too. Notable
exceptions are [1, 9] where terms are interpreted as sets of possible worlds. How-
ever, these papers do not consider the usual term structure of justification logics.
Also note that there are topological approaches to evidence available [10, 20, 21],
which, however, do not feature justifications explicitly in their language.
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It is the aim of this paper to provide a new semantics, called subset seman-
tics for justification logic that interprets terms as sets of possible worlds and
operations on terms as operations on sets of possible worlds. We will then say
that t : A is true if A is true in all worlds belonging to the interpretation of
t. We give a systematic study of this new semantics including soundness and
completeness results and we show that the approach of [1] can be seen as a
special case of our semantics.

Usually, justification logic includes an application operator that represents
modus ponens (MP) on the level of terms. We provide two approaches to handle
this operator in our semantics. The first is to include a new constant c?, which
is interpreted as the set of all worlds closed under (MP) and then use this new
constant to define an application operator. The second way is to include a
application operator directly. However, this leads to some quite cumbersome
definitions.

Another difference between our semantics and many other semantics for
justification logic is that we allow non-normal (impossible) worlds. They are
usually needed to model the fact that agents are not omniscient and that they do
not see all consequences of the facts they are already aware of. In an impossible
world both A and ¬A may be true or none of them. This way of using impossible
worlds was investigated by Veikko Rantala [18, 19].

We start with presenting the c?-subset models with the corresponding syn-
tax, axioms and semantics and proving soundness and completeness. In a sec-
ond part we will present the alternative approach, i.e. keeping the (j)-axiom
and dealing with some cumbersome definitions within the semantics. It will be
shown that the corresponding models are sound and complete as well. In a last
section we will show that c?-subset models can be used to reason about un-
certain knowledge by referring to Artemov’s work on aggregating probabilistic
evidence.

2 L?CS-subset models

2.1 Syntax

Justification terms are built from countably many constants ci and variables xi
and the special and unique constant c? according to the following grammar:

t ::= ci | xi | c? | (t+ t) | !t

The set of terms is denoted by Tm. The set of atomic terms, i.e. terms that
do not contain any operator + or ! is denoted by ATm. The operation + is
left-associative.
Formulas are built from countably many atomic propositions pi and the sym-
bol ⊥ according to the following grammar:

F ::= pi | ⊥ | F → F | t : F
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The set of atomic propositions is denoted by Prop and the set of all formulas
is denoted by LJ . The other classical Boolean connectives ¬,>,∧,∨,↔ are
defined as usual.

Definition 1 (c?-term). A c?-term is defined inductively as follows:

• c? is a c?-term

• if s and t are terms and c is a c?-term then s+ c and c+ t are c?-terms

So a c?-term is either c? itself or a sum-term where c? occurs at least once.
We investigate a family of justification logics that differ in their axioms and

how the axioms are justified. We have two sets of axioms, the first axioms are:

cl all axioms of classical propositional logic;
j+ s : A ∨ t : A→ (s+ t) : A;
jc? c : A ∧ c : (A→ B)→ c : B for all c?-terms c.

The set of these axioms is denoted by L?α.
There is another set of axioms:

j4 t : A→!t : (t : A);
jd t :⊥→⊥;
jt t : A→ A.

This set is denoted by L?β . It is easy to see that jd is a special case of jt. By L?

we denote all logics that are composed from the whole set L?α and some subset
of L?β . Moreover, a justification logic L? is defined by the set of axioms and its
constant specification CS that determines which constant justifies which axiom.
So the constant specification is a set

CS ⊆ {(c, A) | c is a constant and A is an axiom of L?}

In this sense L?CS denotes the logic L? with the constant specification CS. To
deduce formulas in L?CS we use a Hilbert system given by L? and the rules modus
ponens:

A A→ B (MP)
B

and axiom necessitation

(AN!) ∀n ∈ N, where (c, A) ∈ CS
!...!︸︷︷︸
n

: !...!︸︷︷︸
n−1

: ... : !!c : !c : c : A

Definition 2 (axiomatically appropriate CS). A constant specification CS
is called axiomatically appropriate if for each axiom A, there is a constant c
with (c, A) ∈ CS.
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2.2 Semantics

Definition 3 (L?CS-subset models). Given some logic L? and some constant
specification CS, then an L?CS-subset model M = (W,W0, V, E) is defined by:

• W is a set of objects called worlds.

• W0 ⊆W and W0 6= ∅ .

• V : W × LJ → {0, 1} such that for all ω ∈W0, t ∈ Tm, F,G ∈ LJ :

– V (ω,⊥) = 0;

– V (ω, F → G) = 1 iff V (ω, F ) = 0 or V (ω,G) = 1;

– V (ω, t : F ) = 1 iff E(ω, t) ⊆ { υ ∈W | V (υ, F ) = 1 }.

• E : W × Tm→ P(W ) that meets the following conditions where we use

[A] := {ω ∈W | V (ω,A) = 1}. (1)

For all ω ∈W0, and for all s, t ∈ Tm:

– E(ω, s+ t) ⊆ E(ω, s) ∩ E(ω, t);

– E(ω, c?) ⊆WMP where WMP is the set of deductively closed worlds,
see below;

– if jd ∈ L?, then ∃υ ∈W0 with υ ∈ E(ω, t);

– if jt ∈ L?, then ω ∈ E(ω, t);

– if j4 ∈ L?, then

E(ω, !t) ⊆
{ υ ∈W | ∀F ∈ LJ (V (ω, t : F ) = 1⇒ V (υ, t : F ) = 1) } ;

– for all n ∈ N and for all (c, A) ∈ CS : E(ω, c) ⊆ [A] and

E(ω, !...!︸︷︷︸
n

c) ⊆ [ !...!︸︷︷︸
n−1

c : ....!c : c : A].

The set WMP is formally defined as follows:

WMP := {ω ∈W | ∀A,B ∈ LJ ((V (ω,A) = 1 and V (ω,A→ B) = 1)

implies V (ω,B) = 1)}.

So WMP collects all the worlds where the valuation function is closed under
modus ponens. W0 is the set of normal worlds. The set W \W0 consists of the
non-normal worlds. Moreover, using the notation introduced by (1), we can
read the condition on V for justification terms t : F as:

V (ω, t : F ) = 1 iff E(ω, t) ⊆ [F ]

Since the valuation function V is defined on worlds and formulas, the defi-
nition of truth is pretty simple:
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Definition 4 (Truth in L?CS-subset models). Given an L?CS-subset model
M = (W,W0, V, E) and a world ω ∈W and a formula F we define the relation

 as follows:

M, ω 
 F iff V (ω, F ) = 1

Remark 5. With the conditions on E(w, c?) and E(w, s + t) we obtain the
intended meaning of a c?-term s+c?, namely that we consider only deductively
closed worlds of s. However, the set E(s + c?) does not have to be exactly the
intersection of E(w, s) with WMP since we only have a subset-relation instead
of equality. Hence E(w, s + c?) 6= E(w, c? + s) in general. So even if in two
c?-terms the exactly same evidence sets occur, their order still matters. For
the same reason s + t : A → t + s : A is not valid for any two distinct terms s
and t.

2.3 Soundness

Since non-normal worlds will not be sound even with respect to the axioms of
classical logic, we only have soundness within W0.

Theorem 6 (Soundness of L?CS-subset models). For any justification logic
L?CS and any formula F ∈ LJ :

L?CS ` F ⇒ M, ω 
 F for all L?CS-subset models M and all ω ∈W0

Proof. The proof is by induction on the length of the derivation of F :

• If F is an instance of some axiom of classical logic, then the truth of F
only depends on the valuation functions within the worlds of W0. And all
worlds of W0 behave appropriately by definition.

• If F is derived by modus ponens, then there is a G ∈ LJ s.t. L?CS ` G→ F
and L?CS ` G. By induction hypothesis M, ω 
 G→ F hence

V (ω,G→ F ) = 1

and therefore since ω ∈ W0, V (ω,G) = 0 or V (ω, F ) = 1 and again by
induction hypothesis M, ω 
 G and therefore V (ω,G) = 1. Because of
this and ω ∈W0, we obtain V (ω, F ) = 1, which is M, ω 
 F .

• If F is derived by axiom necessitation, then F = c : A for some (c, A) ∈ CS.
By the condition on E within L?CS-subset models we have E(ω, c) ⊆ [A]
for all ω ∈ W0. Hence V (ω, c : A) = 1 and therefore M, ω 
 c : A. If F
is a more complex formula like !c : (c : A) derived by axiom necessitation,
the argument is analogue.

• If F is an instance of the j+-axiom, then F = s : A∨ t : A→ s+ t : A for
some s, t ∈ Tm and A ∈ LJ .
Suppose wlog.M, ω 
 s : A, by Definition 4 we get V (ω, s : A) = 1 and by
Definition 3 and the conditions on V for worlds in W0, E(ω, s) ⊆ [A]. Since
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E(ω, s+ t) ⊆ E(ω, s)∩E(ω, t) ⊆ E(ω, s) we obtain that E(ω, s+ t) ⊆ [A]
and by the condition on E in W0 in Definition 3 that V (ω, s+ t : A) = 1.
Hence by Definition 4 M, ω 
 s+ t : A.

• If F is an instance of the jc?-axiom, then

F = c : A ∧ c : (A→ B)→ c : B

for some A,B ∈ LJ and a c?-term c.
Suppose that M, ω 
 c : A and M, ω 
 c : (A → B). i.e. E(ω, c) ⊆ [A]
and E(ω, c) ⊆ [A → B]. Hence for all υ ∈ E(ω, c) we obtain V (υ,A) = 1
and V (υ,A→ B) = 1. From the definition of c?-terms, the conditions on
E(w, c?) and E(w, s+ t) for some terms s, t, we infer that E(w, c) ⊆WMP

and we conclude V (υ,B) = 1 and hence E(ω, c) ⊆ [B] and this means
that M, ω 
 c : B.

• If F is an instance of the jd-axiom, then F = t :⊥→⊥ for some t ∈ Tm.
Suppose towards a contradiction that M, ω 
 t :⊥ for some t ∈ Tm, then
by Definition 4 we obtain that V (ω, t :⊥) = 1 and hence by the condition
of E in the worlds of W0, E(ω, t) ⊆ [⊥]. Since M must be a jd-L?CS-
subset model we claim that ∃υ ∈ W0 s.t. υ ∈ E(ω, t). From υ ∈ E(ω, t)
we derive by the condition on V in Definition 3 υ ∈ [⊥] or in other words
υ ∈ (υ′ ∈ W | V (υ′,⊥) = 1) and hence V (υ,⊥) = 1 and this contradicts
the claim that υ ∈W0.

• If F is an instance of the jt-axiom, then F = t : A→ A for some A ∈ LJ
and some t ∈ Tm.
Suppose M, ω 
 t : A. By Definition 4 we obtain that V (ω, t : A) = 1.
By the condition on worlds in W0 in Definition 3 we get E(ω, t) ⊆ [A].
Since M is a jt-L?CS-subset model, ω ∈ E(ω, t) and therefore we conclude
ω ∈ [A]. Hence V (ω,A) = 1 and by Definition 4 we obtain thatM, ω 
 A.

• If F is an instance of the j4-axiom, then F = t : A →!t : (t : A) for some
A ∈ LJ and t ∈ Tm
SupposeM, ω 
 t : A, then by Definition 4 we obtain that V (ω, t : A) = 1.
By the condition on E for j4-L?CS-subset models for all υ ∈ E(ω, !t) we
obtain V (υ, t : A) = 1. Therefore E(ω, !t) ⊆ [t : A] and by Definition 3
there is V (ω, !t : (t : A)) = 1 and again by Definition 4 we conclude
M, ω 
 !t : (t : A).

The j-axiom s : (A→ B)→ (t : A→ s · t : B) is not part of our logic. Using
the (c?)-axiom, we can define an application operation such that the j-axiom is
valid.

Definition 7 (Application). We introduce a new abbreviation · on terms by:

s · t := s+ t+ c?

6



Lemma 8 (The “j-axiom” follows). For all M = (W,W0, V, E), ω ∈ W0,
A,B ∈ LJ and s, t ∈ Tm:

M, ω 
 s : (A→ B)→ (t : A→ s · t : B)

Proof. AssumeM, ω 
 s : (A→ B) andM, ω 
 t : A. Thus E(ω, s) ⊆ [A→ B]
and E(ω, t) ⊆ [A]. We find

E(ω, s · t) = E(ω, s+ t+ c?) =

E(ω, s) ∩ E(ω, t) ∩ E(ω, c?) ⊆ [A→ B] ∩ [A] ∩ E(ω, c?).

Hence for all υ ∈ E(ω, s · t) we have V (υ,A → B) = 1 and V (υ,A) = 1 and
υ ∈ E(ω, c?) and therefore V (υ,B) = 1. Hence E(ω, s · t) ⊆ [B] and we obtain
M, ω 
 s · t : B.

Of course there is as well a derivation within any of the presented logics. We
use CR as an abbreviation for classical reasoning.

s : (A→ B)→ s+ t : (A→ B) j+

s+ t : (A→ B)→ s+ t+ c? : (A→ B) j+

s : (A→ B)→ s+ t+ c? : (A→ B) CR

t : A→ s+ t : A j+

s+ t : A→ s+ t+ c? : A j+

t : A→ s+ t+ c? : A CR

s+ t+ c? : (A→ B)→ (s+ t+ c? : A→ s+ t+ c? : B) jc?

s : (A→ B)→ (t : A→ s+ t+ c? : B) CR

2.4 Completeness

To prove completeness we will construct a canonical model and then show that
for every formula F that is not derivable in L?CS, there is a model MC with
a world Γ ∈ WC

0 s.t. MC ,Γ 
 ¬F . Like in the case of other semantics for
justification logics, the completeness of logics containing (jd) is only given, if
the corresponding constant specification is axiomatically appropriate. Before we
start with the definition of the canonical model, we must do some preliminary
work. We will first prove that our logics are conservative extensions of classical
logic. With this result we can argue, that the empty set is consistent and hence
can be extended to so-called maximal L?CS-consistent sets of formulas. These
sets will be used to build the W0-worlds in the canonical model.

Theorem 9 (Conservativity). All logics L? presented are conservative exten-
sions of the classical logic CL, i.e. for any formula F ∈ Lcp:

L? ` F ⇔ CL ` F
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Proof. Since L? is an extension of CL the right-to-left direction is obvious.
To prove the direction from left to right we use a translation t : LJ → Lcp:

t(P ) := P

t(⊥) :=⊥
t(A→ B) := t(A)→ t(B)

t(s : A) := t(A)

This translation removes all justification terms from a given formula. Now we
show by induction on the length of the derivation for some formula A that
CL ` t(A) whenever L? ` A and note that t(A) = A for any A ∈ Lcp. The cases
where A is an axiom of CL is then obvious, since all logics L? contain all axioms
of CL.

• cl: If A is an instance of some axiom scheme in LJ , then t(A) = A is an
instance of the same axiom scheme in CL.

• j+: t(s : A ∨ t : A → (s + t) : A) = A ∨ A → A, which is a classical
tautology.

• jc?: t(c : A ∧ c : (A → B) → c : B) = A ∧ (A → B) → B, which is a
classical tautology.

• j4,jd,jt: All translations have the form A → A, which is a classical tau-
tology.

• modus ponens: If A is derived by modus ponens, then there is a formula
B s.t. L? ` B → A and L? ` B and by induction hypothesis

Lcp ` t(B)→ t(A)

and Lcp ` t(B) and hence t(A) can be derived in CL by modus ponens.

• axiom necessitation: If A is derived by axiom necessitation, then A
is of the form c : B for some axiom B. But t(c : B) = B and B is an
axiom.

Definition 10 (Consistency). A logical theory L is called consistent, if L 6`⊥.
A set of formulas Γ ⊂ LJ is called L-consistent if L 6`

∧
Σ →⊥ for every finite

Σ ⊆ Γ. A set of formulas Γ is called maximal L-consistent, if it is L-consistent
and none of its proper supersets is.

Since all presented logics are conservative extensions of CL , we have the
following consistency result.

Lemma 11 (Consistency of the logics). All presented logics are consistent.

As usual, we have a Lindenbaum lemma and the usual properties of maximal
consistent sets hold, see, e.g., [16].
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Lemma 12 (Lindenbaum Lemma). Given some logic L, then for each L-
consistent set of formulas Γ ⊂ LJ there exists a maximal consistent set Γ′ such
that Γ ⊆ Γ′.

Lemma 13 (Properties of maximal consistent sets). Given some logic L
and its language LJ . If Γ is a maximal L-consistent set, then for all F,G ∈ LJ :

(1) if L ` F , then F ∈ Γ;

(2) F ∈ Γ if and only if ¬F 6∈ Γ;

(3) F → G ∈ Γ if and only if F 6∈ Γ or G ∈ Γ;

(4) F ∈ Γ and F → G ∈ Γ imply G ∈ Γ.

Definition 14 (Canonical Model). For a given logic L?CS we define the canon-
ical model MC = (WC ,WC

0 , V
C , EC) by:

• WC = P(LJ).

• WC
0 =

{
Γ ∈WC

∣∣ Γ is maximal L?CS − consistent set of formulas
}

.

• V C : V C(Γ, F ) = 1 iff F ∈ Γ;

• EC : With Γ/t := {F ∈ LJ | t : F ∈ Γ} and

WC
MP :=

{
Γ ∈WC

∣∣ ∀A,B ∈ LJ : if A→ B ∈ Γ and A ∈ Γ then B ∈ Γ
}

we define :

EC(Γ, t) =
{

∆ ∈WC
MP

∣∣ ∆ ⊇ Γ/t
}

if t is a c?-term

EC(Γ, t) =
{

∆ ∈WC
∣∣ ∆ ⊇ Γ/t

}
otherwise.

Now we must show that the canonical model is indeed an L?CS-subset model.

Lemma 15. The canonical model MC is an L?CS-subset model if either

(1) (jd) /∈ L?CS or

(2) the constant specification CS is axiomatically appropriate or (jt) ∈ L?CS.

Proof. In order to prove this, we have to show thatMC meets all the conditions
we made for the valuation and evidence function and the constant specification
i.e.:

(1) WC
0 6= ∅.

(2) For all Γ ∈WC
0 :

(a) V C(Γ,⊥) = 0;

(b) V C(Γ, F → G) = 1 iff V C(Γ, F ) = 0 or V C(Γ, G) = 1;

(c) V C(Γ, t : F ) = 1 iff EC(Γ, t) ⊆ [F ].
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(3) For all Γ ∈WC
0 , F ∈ LJ , s, t ∈ Tm:

(a) EC(Γ, s+ t) ⊆ EC(Γ, s) ∩ EC(Γ, t);

(b) EC(Γ, c?) ⊆WC
MP ;

(c) if jd in L?: ∀Γ ∈WC
0 and ∀t ∈ Tm : ∃∆ ∈WC

0 s.t. ∆ ∈ EC(Γ, t);

(d) if jt in L?: ∀Γ ∈WC
0 and ∀t ∈ Tm : Γ ∈ EC(Γ, t);

(e) if j4 in L?:

EC(Γ, !t) ⊆{
∆ ∈WC

∣∣ ∀F ∈ LJ(V C(Γ, t : F )⇒ V C(∆, t : F ) = 1)
}

;

(f) for all (c, A) ∈ CS: EC(Γ, c) ⊆ [A] and

EC(Γ, !...!︸︷︷︸
n

c) ⊆ [ !...!︸︷︷︸
n−1

c : ....!c : c : A] for all n ∈ N.

So the proofs are here:

(1) Since the empty set is proven to be L?CS-consistent (see Lemma 11) it can
be extended by the Lindenbaum Lemma to a maximal L?CS-consistent set
of formulas Γ with Γ ∈WC

0 .

(2) Suppose Γ ∈WC
0 :

(a) We claim V C(Γ,⊥) = 0: Suppose the opposite, then V C(Γ,⊥) = 1
hence by the definition of V C follows that ⊥∈ Γ. But this is a
contradiction to the fact that Γ is consistent.

(b) From left to right: Suppose V C(Γ, F → G) = 1, then by the defi-
nition of V C , F → G ∈ Γ. Since Γ is maximal L?CS-consistent this
implies by Lemma 13 (3) that F 6∈ Γ or G ∈ Γ. Hence again by the
definition of V C , V C(Γ, F ) = 0 or V C(Γ, G) = 1.
From right to left: Suppose V C(Γ, F ) = 0 or V C(Γ, G) = 1, then
by the definition of V C either F 6∈ Γ or G ∈ Γ. Since Γ ∈ WC

0 ,Γ
is maximal L?-consistent and hence in both cases by Lemma 13 (3)
F → G ∈ Γ. But this means again by the definition of V C that
V (Γ, F → G) = 1.

(c) From left to right: Suppose V C(Γ, t : F ) = 1, then by Definition 14
t : F ∈ Γ. Hence with the definition of Γ/t we obtain F ∈ Γ/t. So
for each ∆ ∈ EC(Γ, t), F ∈ ∆ (again by Definition 14). Hence for
these ∆ it follows by the definition of V C that V C(∆, F ) = 1 and
therefore ∆ ∈ [F ]. Since this is true for all ∆ ∈ EC(Γ, t) we obtain
EC(Γ, t) ⊆ [F ].
From right to left: The proof is by contraposition.
Suppose V C(Γ, t : F ) 6= 1, then by the definition of V C t : F 6∈ Γ.
We define a world ∆ by ∆ := Γ/t. Since ∆ ∈ P(LJ) we can be sure
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that ∆ exists, i.e. ∆ ∈ W . Since t : F 6∈ Γ it follows that F 6∈ Γ/t
and therefore F 6∈ ∆. But obviously ∆ ⊇ Γ/t hence ∆ ∈ EC(Γ, t).
So we conclude EC(Γ, t) 6⊆ [F ].
It remains to show that in case t is a c?-term,∆ := Γ/t ∈WC

MP since
otherwise ∆ 6∈ EC(Γ, t). In fact this is the case. Since Γ ∈ WC

0 we
obtain that Γ is a maximal L?CS-consistent set of formulas and hence,
whenever t : A, t(A→ B) ∈ Γ for a c?-term t then by jc? we obtain
t : B ∈ Γ. This means that whenever A ∈ ∆ and A → B ∈ ∆ then
B ∈ ∆. Hence ∆ = Γ/t is closed under modus ponens and therefore
∆ ∈WC

MP . So together with the former reasoning ∆ ∈ E(Γ, t).

(3) Suppose Γ ∈WC
0 :

(a) Given some F ∈ LJ , s, t ∈ Tm: To prove this, we start by an ob-
servation on the relation between the sets Γ/(s + t) and Γ/s for
Γ ∈ WC

0 . If s : A ∈ Γ then since Γ is maximal L?CS-consistent
s + t : A ∈ Γ hence Γ/s ⊆ Γ/(s + t). With the same reasoning
Γ/t ⊆ Γ/(s + t). So if ∆ ⊇ Γ/(s + t) then ∆ ⊇ Γ/s and ∆ ⊇ Γ/t.
Hence EC(Γ, s+ t) ⊆ EC(Γ, s) and EC(Γ, s+ t) ⊆ EC(Γ, t).1 There-
fore EC(Γ, s+ t) ⊆ EC(Γ, s) ∩ EC(Γ, t).

(b) This follows directly from the fact that c? is a c?-term and the
definition of EC(Γ, t) for c?-terms.

(c) If jd in L?, either CS is axiomatically approporiate or (jt) ∈ L? too.

• CS is axiomatically appropriate.
For any Γ ∈WC

0 we obtain ¬(t :⊥) ∈ Γ. Hence ⊥6∈ Γ/t. Suppose
towards a contradiction that Γ/t is not L?CS-consistent, i.e. there
exist A1, . . . An ∈ Γ/t s.t.

A1, . . . , An `L?
CS
⊥ . (2)

This together with the construction of Γ/t leads to t : A1, . . . , t :
An ∈ Γ. Since CS is axiomatically appropriate we can use (2) to
infer t : A1, . . . , t : An `L?

CS
s(t) :⊥, for some term s(t) only based

on t. Since Γ is assumed to be maximally consistent we can use
(jd) and apply modus ponens to infer⊥∈ Γ which contradicts the
assumption that Γ is consistent. Therefore Γ/t is L?CS-consistent
and can be expanded by the Lindenbaum Lemma to a maximal
L?CS-consistent set ∆ ⊇ Γ/t with ∆ ∈WC

0 and ∆ ∈ EC(Γ, t).

• (jt) ∈ L?:
The claim is a direct consequence of property (3d) (see next
item).

(d) Suppose for some F ∈ LJ ,Γ ∈ WC
0 and t ∈ Tm that F ∈ Γ/t,

i.e. t : F ∈ Γ, since Γ is maximal L?CS-consistent and t : F → F is

1Please note if either s or t is a c?-term this only holds due to EC(Γ, s+t) being constrained
to WMP by the fast that s + t is a c?-term too.
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an instance of the jt-axiom, we conclude that F ∈ Γ. Since F was
arbitrary we obtain Γ ⊇ Γ/t and hence Γ ∈ EC(Γ, t).

(e) Suppose for some ∆ ∈ EC(Γ, !t), hence ∆ ⊇ Γ/!t. Then assume
for some arbitrary F ∈ LJ , V (Γ, t : F ) = 1 i.e. by Definition 14
t : F ∈ Γ. Since Γ is maximal L?CS-consistent and t : F →!t : (t : F )
is an instance of the j4-axiom we obtain !t : (t : F ) ∈ Γ and hence
t : F ∈ Γ/!t. But then t : F ∈ ∆ and by Definition 14 it follows
that V C(∆, t : F ) = 1. Since F was an arbitrary formula and ∆ an
arbitrary world of EC(Γ, !t) we conclude that the condition holds.

(f) Suppose (c, A) ∈ CS, then maximal L?CS-consistency implies for all
Γ ∈ WC

0 that c : A ∈ Γ. Hence A ∈ Γ/c and for all ∆ ∈ EC(Γ, c) we
obtain A ∈ ∆ and therefore EC(Γ, c) ⊆ [A].

Furthermore maximal L?CS-consistency implies for all Γ ∈ WC
0 by

axiom necessitation that

!...!︸︷︷︸
n

c : ... :!c : c : A ∈ Γ.

Hence
!...!︸︷︷︸
n−1

c : ... :!c : c : A ∈ Γ/ !...!︸︷︷︸
n

c

and for all ∆ ∈ EC(Γ, !...!︸︷︷︸
n

c) we obtain

!...!︸︷︷︸
n−1

c : ... :!c : c : A ∈ ∆

and therefore

EC(Γ, !...!︸︷︷︸
n

c) ⊆ [ !...!︸︷︷︸
n−1

c : ... :!c : c : A].

Hence the canonical model is an L?CS-subset model and we are nearly done.
The Truth Lemma follows very closely:

Lemma 16 (Truth Lemma). Let MC = (WC ,WC
0 , E

C , V C) be a canonical
model, then for all Γ ∈WC

0 :

MC ,Γ 
 F if and only if F ∈ Γ.

Proof.

MC ,Γ 
 F
Def. 4⇐==⇒ V C(Γ, F ) = 1

Def. 14⇐===⇒ F ∈ Γ.

Hence each maximal L?CS-consistent set is represented by some world in the
canonical model and thus completeness follows directly:

12



Theorem 17 (Completeness). Given some logic L? and a constant specifica-
tion CS, which is required to be axiomatically appropriate in case (jd) ∈ L? and
(jt) /∈ L?, then

M,Γ 
 F for all L?CS-subset models M and for all Γ ∈W0 =⇒ L?CS ` F.

Proof. The proof works with contraposition: Assume that L?CS 6` F . Then {¬F}
is L?CS-consistent and by the Lindenbaum Lemma contained in some maximal
L?CS-consistent world Γ of the canonical model MC . Then MC ,Γ 6
 F .

3 LACS-subset models

In this part we present an alternative definition of subset models for justification
logic that directly interprets the application operator. Hence we work with the
standard language of justification logic and we consider the j-axiom instead of
the axiom (c?).

3.1 Syntax

In this section, justification terms are built from constants ci and variables xi
according to the following grammar:

t ::= ci | xi | (t · t) | (t+ t) | !t

This set of terms is denoted by TmA. The operations · and + are left-associative
and ! binds stronger than anything else. Formulas are built from atomic propo-
sitions pi and the following grammar:

F ::= pi | ⊥ | F → F | t : F

The set of atomic propositions is denoted by Prop and the set of all formulas is
denoted by LA

J . Again we use the other logical connectives as abbreviations.
As in the first section, we investigate again a whole family of logics. They

are arranged in two sets of axioms. The first set, denoted by LA
α contains the

following axioms:

cl all axioms of classical propositional logic;
j s : (A→ B)→ (t : A→ s · t : B);
j+ s : A ∨ t : A→ (s+ t) : A.

The other is identical to L?β (modulo the different language) and contains:

j4 t : A→!t : (t : A);
jd t :⊥→⊥;
jt t : A→ A.

For the sake of uniformity we denote this set of axioms by LA
β . By LA we denote

all logics that are composed from the whole set LA
α and some subset of LA

β .

13



There are no differences between these logics and the ones of the former
section except in case of application. Therefore we skip all the details already
mentioned and proved before.
CS and LA

CS are defined as before except that the corresponding logic has changed
as mentioned. And deducing formulas in LA

CS works the same as in the previous
section.

3.2 Semantics

Definition 18 (LA
CS-subset models). Given some logic LA

CS then an LA
CS-subset

model M = (W,W0, V, E) is defined like an L?CS-subset model where

E : W × TmA → P(W )

meets the following condition for terms of the form s · t:

E(ω, s · t) ⊆ {υ ∈W | ∀F ∈ APPω(s, t)(υ ∈ [F ])},

where we use

APPω(s, t) := {F ∈ LA
J | ∃H ∈ LA

J s.t. E(ω, s) ⊆ [H → F ] and E(ω, t) ⊆ [H]}.

The set APPω(s, t) contains all formulas that are colloquially said derivable
by applying modus ponens to a formula justified by s and a formula justified
by t.

Truth in an LA
CS-subset models is defined as before.

Definition 19 (Truth in LA
CS-subset models). Let M = (W,W0, V, E) be

an LA
CS-subset model, then for a world ω ∈ W and a formula F we define the

relation 
 as follows:

M, ω 
 F iff V (ω, F ) = 1.

3.3 Soundness

Theorem 20 (Soundness of LA
CS-subset models). For any justification logic

LA, any constant specification CS and any formula F :

LA
CS ` F ⇒ M, ω 
 F for all LA

CS − subset models M and all ω ∈W0.

Proof. The proof is by induction on the length of the derivation of F and it is
analogue to the proof of Theorem 6. The only thing that changes is the case,
where F is an instance of the j-axiom:
Then F = s : (A→ B)→ (t : A→ s · t : B) for some s, t ∈ TmA and A,B ∈ LA

J .
Assume for some ω ∈ W0 that M, ω 
 s : (A → B) and M, ω 
 t : A. Then
by Definition 19 V (ω, s : (A → B)) = 1. Hence since ω ∈ W0 we obtain
E(ω, s) ⊆ [A → B] and by the same reason V (ω, t : A) = 1 and E(ω, t) ⊆ [A].
From the definition of APPω(r, s) we conclude that B ∈ APPω(s, t). So for all
υ ∈ E(ω, s · t) we obtain by the requirements of E that V (υ,B) = 1 hence
E(ω, s · t) ⊆ [B]. From this, the fact that ω ∈W0 and the requirements of V in
W0 we obtain V (ω, s · t : B) = 1, which is by Definition 19 M, ω 
 s · t : B.

14



3.4 Completeness

Before we start defining a canonical model, we have to do the same preliminary
work for LA

CS as we had to do in the previous section for L?CS. Since the logics L?CS

from the former section differ only in one axiom, i.e. j replaces jc?, we skip all
the parts that are already done and focus on the changes that it brings about.

As before, we have a conservativity and consistency result.

Theorem 21 (Conservativity). All logics LA presented are conservative ex-
tensions of the classical logic CL, i.e. for any formula F ∈ Lcp:

LA ` F ⇔ CL ` F.

Lemma 22 (Consistency of LA). All logics in LA are consistent.

All other ingredients that we needed in the former section to define and
further develop the canonical model were generally defined and proven and can
be adopted without additional effort.

To prove completeness we define a canonical model as follows:

Definition 23 (Canonical Model). For a given logic LA and a constant spec-
ification CS we define the canonical model MC = (WC ,WC

0 , V
C , EC) by:

• WC = P(LA
J);

• WC
0 = {Γ ∈WC | Γ is maximal LA

CS − consistent set of formulas};

• V C : V C(Γ, F ) = 1 iff F ∈ Γ;

• EC : EC(Γ, t) = {∆ ∈W | ∆ ⊇ Γ/t}.

Now we must show that such a canonical model is in fact a subset model.

Lemma 24. The canonical model MC is an LA
CS-subset model if LA does not

contain (jd) or contains it but the corresponding constant specification CS is
axiomatically appropriate or (jt) ∈ LA too.

Proof. In order to prove that, we have to proceed in the same way as in the
previous section, i.e. showing thatMC meets all the conditions we made for the
valuation and the evidence function as well as the constant specification.

(1) W0 6= ∅.

(2) For all Γ ∈WC
0 :

(a) V C(Γ,⊥) = 0;

(b) V C(Γ, F → G) = 1 iff V C(Γ, F ) = 0 or V C(Γ, G) = 1;

(c) V C(Γ, t : F ) = 1 iff E(Γ, t) ⊆ [F ].

(3) For all Γ ∈WC
0 , F ∈ LA

J , s, t ∈ TmA:

15



(a) EC(Γ, s · t) ⊆ {∆ ∈WC | ∀F ∈ APPΓ(s, t)(∆ ∈ [F ])};
(b) EC(Γ, s+ t) ⊆ EC(Γ, s) ∩ EC(Γ, t);

(c) if jd in L: ∀Γ ∈WC
0 and ∀t ∈ TmA : ∃∆ ∈WC

0 s.t. ∆ ∈ EC(Γ, t);

(d) if jt in L: ∀Γ ∈WC
0 and ∀t ∈ TmA : Γ ∈ EC(Γ, t);

(e) if j4 in L:

EC(Γ, !t) ⊆
{∆ ∈WC | ∀F ∈ LA

J(V C(Γ, t : F )⇒ V C(∆, t : F ) = 1)}.

(4) For all (c, A) ∈ CS, EC(Γ) ⊆ [A] for all Γ ∈W0.

Since the canonical model is defined in the same way as the one of L?CS-subset
models, the corresponding proofs can be reused (see Lemma 15). Nevertheless,
there is some difference. Instead of showing that EC(Γ, c?) ⊆ WC

MP we have
to show that EC(Γ, s · t) ⊆ {∆ ∈ WC | ∀F ∈ APPΓ(s, t)(∆ ∈ [F ])}. Assume
that we are given Γ ∈ WC

0 , F ∈ LA
J , s, t ∈ TmA. Take any ∆ ∈ EC(Γ, s · t),

i.e. ∆ ⊇ Γ/(s · t). Hence for all F s.t. s · t : F ∈ Γ we know that F ∈ ∆. Hence
by the definition of V C , we have V (∆, F ) = 1 and therefore ∆ ∈ [F ].

It remains to show: if F ∈ APPΓ(s, t) then s · t : F ∈ Γ. Suppose for some
formula F that F ∈ APPΓ(s, t) then by definition of APPΓ(s, t) we know that
there is a formula H s.t. EC(Γ, s) ⊆ [H → F ] and EC(Γ, t) ⊆ [H]. By using
Lemma 24 (2c) we conclude V C(Γ, s : (H → F )) = 1 and V C(Γ, t : H) = 1.
Hence by the definition of V C we obtain s : (H → F ) ∈ Γ and t : H ∈ Γ and
since Γ is maximal LA

CS-consistent and s : (H → F ) → (t : H → s · t : F ) is an
instance of the j-axiom we conclude that s · t : F ∈ Γ.

Lemma 25 (Truth Lemma). Let MC = (WC ,WC
0 , E

C , V C) be some canon-
ical LA

CS-subset model, then for all Γ ∈W0:

MC ,Γ 
 F if and only if F ∈ Γ.

Proof.

MC ,Γ 
 F
Def. 19⇐===⇒ V C(Γ, F ) = 1

Def. 23⇐===⇒ F ∈ Γ.

Theorem 26 (Completeness). Given some logic LA and a constant specifi-
cation CS, which is axiomatically appropriate in case (jd) ∈ LA, then

M,Γ 
 F for all models M and for all Γ ∈W0 =⇒ LA
CS ` F.

Proof. The proof is analogue to the one of Theorem 17.

4 Artemov’s aggregated evidence and L?CS-subset
models

Artemov [1] considers the case in which we have a database, i.e. a set of propo-
sitions Γ = {F1, . . . Fn} with some kind of probability estimates and in which
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we also have some proposition X that logically follows from Γ. Then we can
search for the best justified lower bound for the probability of X. He presents
us a nice way to find this lower bound. To find it, he assumes probability
events u1, . . . , un, each of them supporting some proposition in Γ, i.e. ui : Fi,
and calculates some aggregated evidence e(u1, . . . , un) for X with them. The
probability of e then provides a tight lower bound for the probability of X.

The trick he uses is the following:

(1) First he collects all subsets ∆i of Γ which support X, i.e. ∆i ` X, and
creates a new evidence ti from all the corresponding uij s.t. uij : Fij for
each Fij ∈ ∆i.

(2) In the second step he combines all these new pieces of evidence to a new
evidence (the so-called aggregated evidence) that actually is the greatest
evidence supporting X.

The model he has in mind contains some evaluation in a probability space
(Ω,F , P ) with a mapping ? from propositions to Ω and evidence terms to F that
meets some restrictions (for more details on this see [1]). Step (1) is to create a
new evidence ti for each ∆i described above, which consists of the intersection
of the corresponding uij’s.

ti :=
⋂
{uij | uij ⊆ F ?ij for some Fij ∈ ∆i}.

Step (2) then is to union all these pieces of evidence to a new so-called aggregated
evidence:

AEΓ(X) :=
⋃
{ti | ti is an evidence for X obtained by step (1)}.

On the syntactic side evidence terms are built from variables u1, . . . , un,
constants 0 and 1 and operations ∩ and ∪, where st is used as an abbreviation
for s ∩ t. With this we can built a free distributive lattice Ln where st is the
meet and s∪t is the join of s and t, 0 is the bottom and 1 the top element of this
lattice. Moreover Artemov defines formulas in a usual way from propositional
letters p, q, r, . . . by the usual connectives and adds formulas of the kind t : F
where t is an evidence term and F a purely propositional formula.

The logical postulates of the logic of Probabilistic Evidence PE are:

(1) axioms and rules of classical logic in the language of PE;

(2) s : (A→ B)→ (t : A→ [st] : B);

(3) (s : A ∧ t : A)→ [s ∪ t] : A;

(4) 1 : A, where A is a propositional tautology,
0 : F , where F is a propositional formula;

(5) t : X → s : X, for any evidence terms s and t such that s � t in Ln.
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Artemov presents Soundness and Completeness proofs connecting PE with the
presented semantic, for more details see [1].

Before we can start adapting Artemovs approach to our models, we have to
point out some differences between the semantics and syntax used. First, con-
trary to the models of Artemov, subset models may contain inconsistent worlds,
but this does not significantly affect the applicability of Artemov’s approach on
them.

Another difference is that our evidence function has another domain. In
Artemov’s models the evidence functions is E : Tm→ P(Ω) while in our mod-
els it is E : W × Tm→ P(W ). This difference is due to the fact that we allow
terms to justify non-purely propositional formulas. Although we need to adapt
Artemov’s definitions, these adaptations will maintain the essential character-
istics. So let’s adapt the L?CS-subset models to aggregated L?CS-subset models by
first describing the new syntax for the terms:

Definition 27 (Justification Terms). Justification terms are built from con-
stants 0, 1, ci and variables xi and the special and unique constant c? according
to the following grammar:

t ::= 0 | 1 | ci | xi | c? | (t+ t) | (t ∪ t) | !t

This set of terms is denoted by TmP. As before, we introduce the abbrevia-
tion st := s+ t+ c?.
Even though we have other operators as well, we can construct a free distribu-
tive lattice where we take s+ t as the meet of s and t, s∪ t as the join of them,
0 as the bottom element of the lattice. Note, that st then is the meet of s, t,
and c?. Moreover, 1 and !t are treated like constants.2 As usual, we have

s � t iff s ∪ t = t (3)

There is no difference to our subset models regarding the rules for forming
formulas except that the terms are contained in TmP, of course. The set of
formulas built according to these grammar and rules is denoted by Lprob.

In the definition of L?CS-subset models we only change the conditions on the
evidence function and the domain of V .

Definition 28 (PE-adapted L?CS-subset models). An L?CS-subset model is
called a PE-adapted L?CS-subset model if the valuation function and the evidence
function meet the additional conditions respectively are redefined as follows:
V : W × Lprob → {0, 1} where all conditions listed in Definition 3 remain the
same.
For all ω ∈W0 and for all s, t ∈ TmP

2We do not claim that 1 is the top element since some set E(ω, t) for a world ω ∈W0 and
t ∈ TmP may contain non-normal worlds. If we claimed that 1 was the top element we would
obtain t � 1 and furthermore the set E(ω, 1) would contain non-normal worlds as well. But
since in non-normal worlds axioms may not be true, E(ω, 1) 6⊆ [A] for some axiom A may be
the case and therefore axiom (4) would fail.
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• E(ω, 1) = W0;

• E(ω, 0) = ∅;

• E(ω, s ∪ t) = E(ω, s) ∪ E(ω, t).

And in fact, such an PE-adapted L?CS-subset model is a model of probabilistic
evidence PE.

Theorem 29 (Soundness). PE-adapted L?CS-subset models M are sound with
respect to probabilistic evidence PE, i.e. for all F ∈ Lprob

PE ` F ⇒ M, ω 
 F for all PE-adapted L?CS-subset models and all ω ∈W0.

Proof. The proof is by induction on the length of the derivation of F :

• If F is derived by axiom necessitation or modus ponens or is an instance
of axiom (1), then the proof is the analogue as in Theorem 6 since the
relevant definitions have remained the same.

• If F is an instance of axiom (2) then the proof is analogue to the proof
of Lemma 8: Suppose M, ω 
 s : (A → B) and M, ω 
 t : A then
E(ω, s) ⊆ [A→ B] and E(ω, t) ⊆ [A].

E(ω, st) = E(ω, s+ t+ c?) ⊆
E(ω, s) ∩ E(ω, t) ∩ E(ω, c?) ⊆ [A→ B] ∩ [A] ∩ E(ω, c?).

Hence for all υ ∈ E(ω, st) we have V (υ,A → B) = 1 and V (υ,A) = 1
and υ ∈ E(ω, c?) and therefore V (υ,B) = 1. Hence E(ω, st) ⊆ [B] and
we obtain M, ω 
 st : B.

• If F is an instance of axiom (3) then F = (s : A∧t : A)→ [s∪t : A] for some
A ∈ Lprob, s, t ∈ TmP. Suppose M, ω 
 s : A ∧ t : A hence E(ω, s) ⊆ [A]
and E(ω, t) ⊆ [A]. Therefore E(ω, s ∪ t) ⊆ E(ω, s) ∪ E(ω, t) ⊆ [A] and
since ω ∈W0 we obtain M, ω 
 s ∪ t : A.

• If F is an instance of axiom (4) then either F = 1 : A for some axiom A
or 0 : G for some formula G.
Suppose F = 1 : A for some axiom A. We assume that M, ω 
 A for all
ω ∈ W0, hence E(ω, 1) = W0 ⊆ [A] and therefore M, ω 
 1 : A for all
ω ∈W0.
Suppose F = 0 : G: For any ω ∈ W0 we have E(ω, 0) = ∅ by Definition
28. Since ∅ is a subset of any subset of W , we obtain E(ω, 0) = ∅ ⊆ [G]
for any formula G ∈ Lprob.

• F is an instance of axiom (5). Assume M, ω 
 t : X for some term t and
some formula X and let s � t. By (3) we find t = s ∪ t. Thus

E(ω, t) = E(ω, s ∪ t) = E(ω, s) ∪ E(ω, t)

and therefore E(ω, s) ⊆ E(ω, t). The assumptionM, ω 
 t : X means that
E(ω, t) ⊆ [X]. So we get E(ω, s) ⊆ [X] and conclude M, ω 
 s : X.
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Theorem 30 (model existence). There exists a PE-adapted L?CS-subset model.

Proof. We construct a model M = {W,W0, V, E} as follows:

• W = W0 = {ω}.

• The valuation function is built bottom up:

(1) V (ω,⊥) = 0;

(2) V (ω, P ) = 1, for all P ∈ Prop;

(3) V (ω,A→ B) = 1 iff V (ω,A) = 0 or V (ω,B) = 1;

(4) V (ω, t : F ) = 1 iff t 6≥ 1 or if t ≥ 1 and V (ω, F ) = 1.

• E(ω, t) =

{
{ω} if t ≥ 1

∅ otherwise.

It is straightforward to show that M is indeed a PE-adapted L?CS-subset
model. Let us only show the condition E(ω, s ∪ t) = E(ω, s) ∪ E(ω, t).

Suppose first s, t 6≥ 1, Then E(ω, s ∪ t) = ∅ = E(ω, s) = E(ω, t) and hence
the claim follows immediately.

Suppose at least one term of s and t is in greater than 1, then E(ω, s) = {ω}
or E(ω, t) = {ω} and hence E(ω, s) ∪ E(ω, t) = {ω} and since s ≤ s ∪ t and
t ≤ s ∪ t we obtain s ∪ t ≥ 1 and therefore E(ω, s ∪ t) = {ω}, so the claim
holds.

Note that we cannot use the canonical model to show that adapted subset
models exists since in the canonical model

E(Γ, s ∪ t) 6⊆ E(Γ, s) ∪ E(Γ, t).

However, in an adapted model we need these sets to be equal (see Definition 28)
since otherwise axioms (3) and (5) would not be sound.

5 Conclusion

We introduced a new semantics, called subset semantics, for justifications. So
far, often a symbolic approach was used to interpret justifications. In our seman-
tics, justifications are modeled as sets of possible worlds. We also presented a
new justification logic that is sound and complete with respect to our semantics.
Moroever, we studied a variant of subset models that corresponds to traditional
justification logic.

Subset models provide a versatile tool to work with justifications. In par-
ticular, we can naturally extend them with probability measures to capture
uncertain justifications. In the last part of the paper, we showed that subset
models subsume Artemov’s approach to aggregating probabilistic evidence.
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