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Abstract. Sasaki [7] has presented a cut-elimination procedure for 1K4,
i.e., interpretability logic without Lob’s axiom. We show that his main
idea can also be used to obtain cut-elimination for the full interpretability
logic IL. To achieve this, we introduce a traditional Gentzen-style sequent
calculus for IL and a non-wellfounded version of it. We then develop a
general proof theory for non-wellfounded systems of this type, which
makes a simple cut-elimination argument possible. Our results provide a
useful basis for further research; in particular, they allow us to establish
uniform interpolation for IL.
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Introduction

This paper is concerned with the proof theory of interpretability logic IL ([13]),
i.e., the extension of provability logic with a binary modality formalizing inter-
pretability. We introduce two new calculi for IL: a wellfounded Gentzen calcu-
lus GIL and a non-wellfounded local progress calculus G*IL. We show proof-
theoretically the equivalence of these two calculi and also their equivalence to the
usual Hilbert-style calculus for IL. Further, we develop a general proof theory
for local progress calculi, which makes it possible to obtain a simple cut elimi-
nation result, which can be transferred from the non-wellfounded to the finitary
calculus. Our procedure is displayed in Figurel.

In that figure, we included a cyclic calculus G°IL. Its equivalent to the non-
wellfounded calculus G*®IL can be shown via an auxiliary calculus GS'™IL. This
cyclic system can be used to establish uniform interpolation for IL. We leave the
translations of G°IL and GS"™IL and the proof of uniform interpolation to be
published in future work, due to lack of space.

Thus, the contributions of this paper are threefold:

1. We present a general proof theory of non-wellfounded local progress calculi.
In particular, we introduce the notions of admissible, locally admissible, elim-
inable, and locally eliminable rules and study their relationship.

* Research supported by the Swiss National Science Foundation project
200021 214820.
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Fig. 1. The plan. Arrows without labels are omitted in this paper.

2. We present a simple syntactic cut elimination method for interpretability
logic. To do so, we introduce a traditional Gentzen-style sequent calculus for
IL and a non-wellfounded version of it.

3. Our non-wellfounded proofs exhibit a regular structure (i.e., they lead to
cyclic proofs), which makes them a useful tool for further investigations,
such as establishing uniform interpolation for IL.

Related Work. There are two directions of closely related work. The first
one is non-wellfounded and cyclic proof theory. The structure and methodology
of this paper has been inspired by the seminal [10]. We follow the trend started
in that paper of defining a non-wellfounded Gentzen calculi from a finite one
where cut elimination becomes easier to show. In relation with cut elimination
in non-wellfounded and cyclic proof, there are many proposed methods. The
interested reader may consult [1, 2, 4, 9, 10, 11, 12|, among others.

We use our own method of cut elimination, described in detail in [12], as it
simplifies the non-wellfounded cut elimination to the point of making it totally
analogue to the finitary case.

Secondly, the proof theoretical study of interpretability logics. Sasaki’s work [6,
8, 7] has been a fundamental reference for this paper. Part of our motivation was
to simplify his approach with the use of modern tools (non-wellfounded proof
theory) and build from it. More recently, [5] has also studied the proof theory of
subsystems of IL.

Summary of Sections. In the next section we will introduce the basic
concepts of interpretability logic and non-wellfounded proof theory needed for
the rest of the paper. Section 2 will introduce the Gentzen calculi G*IL and
GIL. Section 3 is devoted to showing the equivalence of IL and GIL + Cut.
Finally, Section 4 shows the central square of Figure 1, thus providing a simple
cut elimination procedure for GIL.

1 Preliminaries

1.1 Interpretability Logic

In this subsection we will define the interpretability logic that we will be working
with. We will also prove that certain formulas, which will be useful to us in the
next sections, are theorems of this logic.



The syntax of interpretability logic is given by
pu=p|lLlo—9|or>09,

where p ranges over a fixed set of propositional variables. We call formulas of
this language IL-formulas. If it will be clear from the context that we are talk-
ing about IL-formula, we will just write formula instead of IL-formula. Other
Boolean connectives can be defined as abbreviations as usual. [J¢ can be defined
as an abbreviation, namely (¢ = —¢ > | and we set Q¢ = —[O-¢. We will also
use the abbreviation B¢ = (¢ > L) A ¢. A formula of the form ¢ > ¢ will be
called a >-formula.

We use lower case Latin letters p, g, ..., possibly with subscripts, for propo-
sitional variables and lower case Greek letters ¢, ¥, ..., possibly with subscripts,
for IL-formulas. To avoid too many parentheses in longer formulas, we treat >
as having higher priority than —, but lower than other Boolean connectives.
Unary operators [0, ¢ and — have the highest priority.

In some proofs we will use the following auxiliary definition of a size of an
IL-formula.

Definition 1. The size |¢| of an IL-formula ¢ is defined recursively as follows:

[L[=0, [pl=1  |¢—=>¢|=[¢>9]=|o]+[¢]+1.

Note that, contrary to the usual definition, the size of L is smaller than the size
of any other formula.
We define the interpretability logic we will consider in this paper.

Definition 2. Interpretability logic 1L is the smallest set of IL-formulas that
contains all the tautologies and arioms

(K) O(¢ = ¢) — (O — Ov),

4) O¢ — OO,
L) O0¢ — ¢) — Lo, 1

( J1) O = ¢¥) = (9> ),
(J2) (e X)A(XBY) = (d>9), (J3) (p>Y)A(XD>Y) = (¢V X) >,
(J4) oY — (O — O1). J5)  Op> o

and is closed under modus ponens and necessitation:

p—=2Y ¢ ¢
(3 ’ O¢

Sometimes we will be referring to (L) axiom as Lob axiom.

P

In the following lemma we will put together some basic properties of IL.
These results will be used in some proofs in the remainder of this paper.

Lemma 1. Let ¢,v be formulas and X be a non-empty finite multiset of for-
mulas. Then

1. IL+ ¢ — 4 implies IL F ¢ > 1.

2. (Léb’s rule in IL) ILE Y AN(E > L) =\ X implies IL - ¢ >\ X.
3. ILF ¢ >Mop.



1.2 Non-wellfounded Proof Theory

We introduce the basic concepts of (non-wellfounded) proof theory that we are
going to use. The details can be found in [12]. We start with the definition of a
non-wellfounded finitely branching tree, from now own simply called tree.

Definition 3. A tree with labels in A is a function T such that

1. Dom(T) C N<¥ closed under prefizes and Im(T) C A.
2. For each w € Dom(T) there is an unique k, called the arity of w, such that
wi € Dom(T) if and only if i < k.

The elements of Dom(T'), also denoted as Node(T'), are called nodes of T'.
Given a tree T an (infinite) branch is an infinite sequence b = (b;);en such
that for each i € N, bli € Node(T).

Basics of Local Progress Calculi. We use upper case Greek letters I', A,
X, I, A, ..., possibly with subscripts, for finite multisets of formulas. The
expression I' > | denotes the multiset {¢p > L | ¢ € I'}. By a sequent, we mean
an ordered pair (I, A) usually denoted as I" = A. We use upper case Latin
letters S, S’, ..., possibly with subscripts, for sequents. Inside sequents, we will
write I A to mean I"'U A and ¢, I" or I', ¢ to mean {¢} U I', as usual. Further,
we will write expressions like (I, ¢, A) > L to mean (I'> L)U{¢p> L} U(AD> L).
Also, we will write sequences of sequents like S,,, ..., Sy as [Si|n. i..0-

Definition 4. An n-ary rule is a set of n+ 1-tuples (So, ..., S,) where each S;
1s a sequent. The elements of a rule are called its instances.
A local-progress sequent calculus is a pair G = (R, L) where

1. R is a set of rules.

2. L is a function such that given a n-ary rule R and a rule instance (So, ..., Sy,)
returns a subset of {0,...,n — 1}, called progressing premises. L is called
the progressing function.

Definition 5. Let G be a local-progress sequent calculus. A preproof 7 in G is
a non-wellfounded tree, whose nodes are anotated by a sequent and a rule of G,
that is generated by the rules of G. In other words, for any n-ary node w of
we have that (Sy,...,Sn—1,S) € R, where R is the rule at w, S is the sequent
at w and S; is the sequent at wi (the i-th successor of w).

Given a preproof m in G and an infinite branch b in m we will say that b
progress at i iff b1 € Lr(So,...,Sn—1,S5) where the node bli is n-ary, R is
the rule at node bli, S is the sequent at node b1 and S; is the sequent at node
(bl4)j for j <n. A preproof m in G is said to be a proof in G iff for any infinite
branch b of w the set {i € N | b progresses at i} is infinite.

A local-progress calculus is said to be wellfounded iff its local progress function
is the constant function always returning @. Given a local progress calculus G
and a rule R not in R we will define the local-progress calculus G + R by adding
the rule R to the calculus and extending the local progress function such that no
premise of an instance of R is a progressing premise.



The Method of Translations. In [12] we developed a method to prove transla-
tions between local progress calculi, i.e., to provide functions transforming proofs
of one calculus into proofs (not necessarily of the same sequent) in another cal-
culus. Here, we will define informally the concepts and methods, the interested
reader should consult [12] for more details.

The idea goes as follows. Given a proof 7 in a local progress calculus G we
can define an partition of its nodes, the elements of the partition will be called
local fragments. Two nodes will belong to the same local fragment if the smallest
path between them does not goes through progress. Here, with passing through
progress we mean going form the premise to the conclusion of a rule instance,
or from conclusion to premise, such that the premise is progressing in the rule
instance. Thanks to the condition that any infinite branch progresses infinitely
often, it is easy to see that each local fragment will be a finite tree, in other
words, this slices the non-wellfounded tree into (possibly infinitely many) finite
trees. Figure 2 is an example on how the slicing can look in this setting, where
each triangle represents a local fragment.

Fig. 2. Structure of proofs in local progress calculi

The bottom-most local fragment, i.e., the one to which the root belongs to, is
called the main local fragment. We define the local height of a proof m, denoted as
lhg(n), as the height of its main local fragment (which is a finite tree, so indeed
it has a height).

Finally, the translation method goes as follows. To define a function from
local-progress Gentzen calculus G to local-progress Gentzen calculus G, it suf-
fices to provide a function (called corecursive step) that, given a proof 7 in G,
returns:

1. a local fragment in G’, i.e., a finite tree generated by the rules of G’ where
everly leaf is either axiomatic or a progressing premise and every progressing
premise is a leaf;



2.

for each non-axiomatic leaf (of the local fragment) with sequent S, a proof
of S'in G.

Then, the desired translation function is obtained by extending this corecursive
step via corecursion. The procedure is displayed in Figure 3.

Fig. 3. Corecursive step function (top) and its extension from proofs to proofs (bot-
tom). Tall gray (white) triangles represent proofs in G (G’) and short gray (white)
triangles represent local fragments in G (G’).

Properties of Rules. Finally we introduce some properties of rules and proofs
that will be fundamental to show cut elimination.

Definition 6. Let R be an n-ary rule, G be a local progress Gentzen calculus
and m a proof in G + R. We say that

1.

2.

AR

R is admissible in G iff for any instance (So,...,Sn—1,S) of the rule R,
GF Sy,...,GFS,_1 implies that G+ S.
R is invertible iff for each i < n, the rule

R;t = {(Sn,Si) | Exists So,...,Si—1,Si41,---Sn_1. (So,...,Sn) € R}

1s admissible. In words, if each of the rules which says that from the conclu-
sion you can infer the premises is admissible.

R is eliminable in G iff for any sequent S if G+ R+ S then G- S.

m is locally R-free iff it contains no instances of R in its main local fragment.
R is locally admissible in G iff for any instance (So, ..., Sn—-1,95) of the rule
if G+ Sp,...,G F S,_1 with locally R-free proofs, then there is a locally
R-free proof of G S.

R is locally eliminable iff for any S, if G = S then there is a locally R-free
proof in G of S.



All the previous properties can be understood as asserting the existence of a proof
7w from the assumption that some proofs 1g,...,Tn_1 exist. Let P be a property
of proofs, we say that any of the properties above holds preserving P if, adding
the extra assumption that 1q, ..., Tn_1 fulfill P, then 7 also fulfills P.

Note that the usual proof of admissibility implying eliminability does not
hold for non-wellfounded proofs, as it requires an induction on the height of a
non-wellfounded proof (which does not exist). For that reason we introduce the
new notions of local height and local eliminability. The main application of the
method of translations is the following lemma, which relates these new notions
to eliminability.

Lemma 2. For any local progress sequent calculi, the following holds
R eliminable iff R locally eliminable iff R locally admissible.

Proof. That R is eliminable trivially implies that R is locally admissible. To
show that R locally admissible implies R locally eliminable it suffices to do an
induction in the local height. Finally, to show that R locally eliminable implies
that R is eliminable it suffices to apply the method of translations using local
eliminability to define a corecursive step.

2 Sequent Calculi for IL

In this section we introduce a two sequent systems for GIL. Let us introduce an
useful convention for describing the rules of these systems. In case X C N we
will define the sets

Py :={¢;i|ie X} and Ux :={¢; |ie€ X}

In particular X will always been an interval like (i, j), [¢, 5] or [4, ).

pT=pada ™ Tr=oath
I'=sA4¢ o, I'= A o, ' = A R
oo =A I'=Adé—v

[¥i, (Yi, Pro,6), @) > L = Dpo,s), @lm..in 0
{pi>Viticm, I = m > ¢, A
[Yi, (Po,3y, @) > L = P04y, blm...i...0
{oi>diticm, ' = Ym > ¢, A
I'=Ax x,I'=A4A
I'=A

>1n

>1K4

Cut

Fig. 4. Sequent rules

We introduce two different sequent systems for IL.



Definition 7. We define the sequent calculus GIL as the wellfounded calculus
given by the rules of Figure 4 without rules >1x4 and Cut.

We define the sequent calculus G*°IL as the local progress sequent calculus
given by the rules of Figure 4 without rules t>11, and Cut. Progress only occurs
at the premises of >1x4.

In the rules ax, 1. L, — L and — R of Figure 4 the explicitly displayed formula
in the conclusion is called the principal formula. In t>11, and >4 the formula
Um > ¢ is called principal, and multisets of formulas I" and A are called the
weakening part of these rules. The explicitly displayed formula in the Cut rule is
called the cut formula. We named the rule k4 of Figure 4 since it was inspired
by ke for system IK4 in [7] and could be use to define a Gentzen calculus for
IK4.

The calculus GIL is inspired from the calculus for IK4 in [7]. It provides a
simplification of the calculus defined there, as we are capable of give a much more
concrete shape to the modal rule. However, we notice a peculiar property of our
system: the premises depend on an ordering of the t>-formulas of the conclusion.
This implies that the same conclusion could have been obtained in multiple
ways, depending on the ordering chosen. The necessity of an order comes from
the axiom (J2) of IL.

The following lemma will be used in many proofs in the rest of this paper,
as usual it is proven by induction on the size of ¢. When we use this lemma in
a proof we will simply write Ax just as we write ax for the rule in Figure 4.

Lemma 3. Let ¢ be a formula. Then in GIL and in G>*IL we have that
Fo, "= ¢, A

We state the eliminability of some rules that will be useful, they are proved
by showing admissibility or local admissibility (depending on the system) and
admissibility or local admissibility is shown by induction on the height or local
height, respectively.

Lemma 4. The rules
I'= A I'=A 1

r= A4 Wk I'= A

are eliminable in GIL(4+Cut) and in GIL(+Cut). In addition

1. In GIL(+Cut) they are eliminable preserving height.
2. In G®IL(+Cut) they are eliminable preserving local height and local Cut-
freeness.

1R

Lemma 5. The rules —L and —R are invertible in GIL(4Cut), preserving
height; and in G®IL(4+Cut), preserving local height and local Cut-freeness.

Notice that in G*IL(4Cut) we added a preservation of local height and local
cut-freeness. It is not hard to see, that if we show local admissibility preserves
these properties while extending local admissibility to eliminability this preser-
vation remains. For preservation of height in GIL(+Cut) a similar argument
applies.



Lemma 6. The rule
o, x> 1=X

o1, I'=e¢>1,A
is admissible in GIL(+Cut) and in G*IL(4Cut)

Nec

Proof. We show it for GIL, the other proof being similar. Assume 7 - ¢, X' > 1 =
XY in GIL(4Cut) and let us enumerate X' = {¢o, ..., ¢m—1}. Then, the desired
proof for GIL is

T
®, Plo,m) > L = Pio.m) Wi L
¢a(¢7¢[0,m)7j—)|>J—:>ds[m,0)aL 1,...=...

>
I>1,T=¢> L A L

where in the right-most dots we are omitting some proofs by LL.
Finally, we note some nice properties of the cut-free systems.
Proposition 1. Any preproof of G®IL is a proof of G™IL.

Proof. The rules — L and — R reduce the size of the sequent (which is just
the sum of the sizes of each formula ocurrence in it). So any infinite branch in a
preproof must have infinitely many instances of >yx4.

Due to the shape of the rules we need to slightly change the usual definition
of subformula set.

Definition 8. Let ¢ be a formula. We define the set Suby (¢) as follows: A

Subs (p) = {p},  Subp(L)={L1},
Subg. (¢ — 1) = {¢ — ¥} U Subr.(¢) U Suby (),
Subp (¢ >1p) ={¢>¢,¢> L,¢pr> L, L} USubr(¢) USubg (¢).

If I is a multiset, Suby (I') = J{Subs(¢) | p € I'}; and if S = (I' = A) is a
sequent, then Suby (S) = Suby (I' U A).

Proposition 2 (Subformula property). Let 7 - S in G®IL or in GIL and
¢ be a formula occurring in w. Then ¢ € Suby(S).

3 Equivalence of IL and GIL + Cut

We show the equivalence of Hilbert style proofs in IL and sequent proofs in the
system GIL+ Cut. First we remember the interpretation of sequents as formulas.

Definition 9. Given a sequent S = I' = A, we define S* = NI — \/ A.

Lemma 7. Let IL F ¢, then GIL 4+ Cut - = ¢.



Proof. By induction on the length of the Hilbert-style proof of ¢. The case of
classical propositional tautology is trivial, the proofs in GIL of the modal axioms
are easy to construct. For modus ponens case it suffices to use Lemma 5 and
Cut. For necessitation case it suffices to use Lemma 6.

The converse of the previous lemma is a simple consequence of the following.
Theorem 1. For any sequent S, IL - S* if and only if GIL + Cut - S.

Proof. Let S = (I' = A). Using Lemma 7, we have that IL - S* implies GIL +
Cut - = AI' — \/ A. Then, using invertibility of — L, — R and admissibility
of 1R, we obtain GIL + Cut - I" = A.

For the other direction, let 7 .S in GIL + Cut. We proceed by induction on
the height of m and cases in the last rule of . The cases where the last rule of
7 is either Ax, 1|1, — L, — R, Cut follow from simple propositional tautologies.
So we focus on the >y, case. Then 7 is of shape

i
|:1/}7 > J—7wi?¢[0,i) > J‘7 ¢ > 1= Q[Ovi)’ ¢:| m...:...0
{(bi > wi}i<m7]—‘ = A>,(/)m > ¢

By the induction hypothesis we get

>1L-

IL b (¢ > L) At A \( @,y > L) A (o> L) = \/ Doy Ve,  fori<m,

so by Lemma 1 we have IL = ((¢; > L) A ) > \/ P 3y V ¢, for i < m. Using
Lemma 1 again with (J2) we have IL F ; > (\/ Do,i) VQS), for i < m. By
induction in 4 we show that IL F (A,_,, ¢: > ¢i) — ¥; > ¢, so assume IL
(Nicm @i > 0i) = ;> ¢, for j < i. Using (J3) we get IL = (A, _,, ¢i > ¥s) —
(Vo %) > ¢ and then IL - (A,_,, ¢i & ;) = (V Po.i) & ¢. Also IL F ¢ 1> ¢,
so we get IL = (A, ¢ > ¥i) = (V Ppos) V @) > ¢. But IL = 1p; > \/ Dio 4y V b so
by the use of (J2) we conclude the desired IL = (A, _,, ¢i > ¥;) = 1; > ¢.

4 Equivalence of GIL(+Cut) and G*IL(+Cut)

In this section we will provide a cut elimination method for GIL by translating
to G*IL and back. Thanks to G*°IL being a local progress calculus, we can
show cut eliminability by just proving local admissibility. On the other hand,
the translation to and back from the local progress calculus will be defined by
recursion.

4.1 From GIL + Cut to G*°IL + Cut

In this subsection we will prove that anything provable in GIL + Cut is also
provable in G*°IL + Cut.

Lemma 8. We have that G*IL F ¢>¢, >y = ¢>x and GCILF = ¢ > W ¢.



Theorem 2. Let S be a sequent. If GIL 4+ Cut F S, then G*IL 4+ Cut I S.

Proof. Let m F S in GIL + Cut. We proceed by induction on the height of the
proof m and case analysis in the last rule applied. The only interesting case is
when the last rule is 11, so 7 is of shape

U
wia (1/)17 (p[O,i)? ¢> > 1= (p[oai)’ (b m...i...0
{0i > Viticm, I = A, > @

So by induction hypothesis we get a proof 7} in G*IL 4 Cut proving the same
sequent as m;, for i < m. First, define a proof 7; in G®IL 4 Cut for ¢ < m as

>1L

!
e

Vi, (Yi, Plogy, @) > L = Do), ¢
Wi, (Po,i), @) > L = Do), @

Then define the proof p in G*®IL + Cut as

AL.

Ti
.wh (¢[O’i)’ ¢) > 1= é[oﬂ')’ ¢ m...i...0 >
{¢l D.wi}i<m7F:>Av.wml>¢ e

We have the following proofs p; in G*®°IL + Cut for i < m

= Vil Wk Lm §
0i > U = b; > Wiy, ;> Wy, 61 > Py, Uy > Wep; = ¢, > Wy Cmt
bi > i = d; > W B
and the following proof p,, in G*®IL 4 Cut
= Y > B, e Wk Lm 8
W, 6= D > O, b > Wiy, Do, > Wiy, W, > = Dy > O Cmt
.wTTL>¢:>wTVLI>¢' u '

The desired proof is obtain by applying cuts with the proofs p and p; for i < m.

4.2 From G°°IL + Cut to G°°IL
In this subsection we will prove the cut elimination theorem for G*°IL.

Lemma 9. We have that Ctr is eliminable in GIL(+Cut). Additionally, elim-
inating Ctr preserves local Cut-freeness.

Proof. We are going to show that Ctr is locally admissible (see Lemma 2). The
construction of local admissibility does not introduce any new cuts, obtaining
the preservativity condition.



We proceed by induction in the local height of the proof and cases in the last
rule applied. The only interesting case is where 7 is of shape

T
Vi, (Po,iy, @) > L = Doy, 0,
D>1K4
{#i > Viticm, ' = At > @

and the formulas we desired to contract do occur on the left hand side and not
occur in I'. So there are j < k < m such that ¢; > 1; = ¢i > ¥ and we want
to show that the sequent {¢; > i bicm,izk, I = A, )y, > ¢ is provable. For each
i > k define the proof p; in G*®IL + Ctr as

T
,,,,,,, Vi (P ) L= Poipd
Vis (Plkr1,6), Phs Plok), @) B> L = Pliyn iy, Pk, Plokys @
Vis (Pirr1,i), Plokys @) > L = Py iy, dks Poy, @
Vi (Pl 1,)s Plo,ky» @) B> L = Pryai), Poky, @
where in order to apply Ctr we used that ¢r = ¢; € P ). Then, the desired
proof (which is trivially locally Ctr-free), is

tr

pm “ e pk+1 7Tk—1 ... ﬂ'o
{0i > Vi}icm,izh, I = Y > ¢, A

where 14 has been applied with ordering ¢g > o, ..., Pr—1 > Yr—1, Pp4+1 >
Y41y -+ Om—1 > Ym—1 and principal formula v, > ¢.

>1K4

Theorem 3 (Local Cut-admissibility). Assume we have proofs # - I' =
Ax and 7 F x, I’ = A in G*®IL + Cut which are locally Cut-free. Then there
ispbE I'= A in G*®IL + Cut which is locally Cut-free.

Proof. By induction on the lexicographic order of the pairs <|X\, lhg(7) +lhg(7)>,
i.e., the size of the formula and the sum of the local height of the premises.

The only interesting case is when both proofs end in an application of >4,
the cut formula is principal in 7 and occurs in the ordering used in 7. Then 7
and 7 are of the following shape:

o0
[#}z, (P00, ) > L = Ppoay, ¢’] i 0

D>1K4
{0i > Vi}icm, [o = Ao, > @
{ }
! / / / /
i (P @) > L= Pl @)L -

{¢3 > w}}j<nvrl = Alawzz > ¢/
where ¥, > ¢ = ¢}, > ). = xo > x1 for some k < n and

({¢s > Viticm: Lo = Ao) = ({¢) > V) }jcnyzn, 11 = A, > 7). (i)



Subcase 1: xo = L. We are going to define proofs (p;)r<;j<n such that

Pi b5 (Pla gy Plogy, ) B L = Py s Ploy, ¢
Then, the desired proof will be
Pn " Pr+1 Tk—1

0
{8 >V} jcnjzk, [1 = A1, > ¢f

We notice that xo = L implies that ¢}, = L, so we define 7; for j > k by applying
1R from Lemma 4 to 7; (thus delemting ¢}, = L from the right hand side of the
sequent). We define p; as

>1K4

/

T
J
/ / / / / /
T B (P kdtnded (O (I
= . 1oL (D LBy @) B L= By Bl

Cut
i (Pl Ploy @) B L= Py ys Plo gy @

Subcase 2: xo # L. Let us write X' = {¢;>t; }icm and X' = {0 i< jk-
Define Iy := I\ (2" \ X) = I1 \ (Z'\ X7). We have, thanks to equality (i), that
D, XN DN\ 5\ X = {¢i > Viticm, Lo = {0 > 0 }jcn jrtr, 11
We also notice that contracting I3, X, X’ we can obtain the desired sequent. Let

us define proofs (p;)i<m, (p})j<n,jzk such that
P; = 1/J;» (dsl(kyj)v ¢[O,m)7 ¢/[(],k)a qb,) > 1= ébg,j)v @[O,m)v dsio,k)a (b/v for k < .7 S n,
Pi F %‘; (9-3[0,1‘)7 @fOJg)? ¢/) > 1= qv)[O,i)a @I[OJC)) ¢l7 for i < m,
p; [ ¢;,( EO,j)?qSI) > 1 = éfo,j)’qsl’ forj < k
Then the desired proof (locally Cut-free) will be
P o Phpr Pmet  P0 Pyt fh
{6i > Viticm, {9 > ) j<njrn, T2 = Ay > ¢f

where >1k4 is applied with ordering

PO>UY,s -y Pl 1 D Up_1, POV0, - - s Pre 1 W15 Pl 1 W5 - - P DU, 1

and main formula 1)/, > ¢'. Then the desired proof will by obtained by applying
contraction, i.e., Lemma 9 to p as contraction preserves local Cut-freeness.
Notice that when defining (pi)i<m, (0})j<n,j#k We can freely use Cut, since
all these instance of cut will not appear in the local fragment of the desired
proof.
We define p; for j < k as 7;, so we only need to define p} for k < j <n and
p; for i < m. To define p;- for k < j < n we notice we have the following proofs:

D>1K4

Tj F 7%’ ( zk;,j)a XOaQSEO’k)) ¢/) > 1= 45/([4;7]')) X07¢E07k)7 (Z)/v



Tm, F X0, (Q[O,mﬁxl) > 1= QS[O,m%Xl: Tk F X1, (Q[O,k)a ()b/) > 1= QSEOJC)) ¢/'
Applying Lemma 6 to 7, and to 7, we obtain proofs =, and 7j, such that
T (Plo,my> x1) > L = xo> L, 73 = (P 5y, ¢") > L = x11> L. Then the desired
proof pf; is

wk(7! wk(7;
o L (T7) (75) Cut

Y ;'7 (@’7)(1) >1= ¢7 X0, X1 Wk(ﬂ-m) Cut
0 u
Wk(TI:') wgﬂ (gp?Xl) > 1= (pa X1
x1> L ; Cut
. o> L= b, x; wk(7g) Cut
1
o> L= h

where we denoted @’( k) Plo.m)» 45{07 k) ¢’ as @ and annotated the cut formula at
the left of the rule application.

All that is left is to define proofs p; for i < m. We remember that we have
the following proofs:

i F i, (Do), X1) > L = Ppo iy, xa i F X1, (Plo )0 8) B L = Dl 1), @

Applying Lemma 6 we obtain 7, + (45’[07@, ¢') > L = x1 > L. Then the desired
proof p; is defined as

wk(r},) wk(m;)
X1 > L ut
) 1/}7;,45|>J_:>¢,X1 Wk(’]'k)
Vi > L= &

Cut

where we denoted ¢y ;), ¢>f0 k) ¢’ as @ and annoted the cut formula at the left
of the rule application.

Corollary 1. If G®IL + Cut - S, then G*IL F S.

Proof. By Lemma 2 and Theorem 3.

4.3 From G°IL to GIL

Theorem 4. For any A finite set of formulas, we have that G®IL - I" = A
implies GILE A> 1, ' = A.

Proof. Let m = I' = A in G*IL. By induction on the lexicographical order
{|Suby (I'UA) \ A, Ihg(7)) and the case analysis in the last rule of 7. The only
interesting case is when the last rule of m be >1x4. So 7 is of shape

i
Vi, (Ppo,i), 0) > L= Py, 9], .,
{¢Z > wi}i<’m7 F = ’(/Jm > ¢7 A

and let us denote the conclusion of 7; as S; and the conclusion of © as S. We
want to show that GIL - A > L, {¢; > ¥;ticm, I’ = m > ¢, A. For i < m we
define proofs 7; = 1y, (¥, P05, A, ) > L = Pjg 4y, A, ¢ by cases.

D>1K4



Case 1. If ¥; € A then we define 7; as

A
i, (1/%795[0,1)»/17@ >1= @[O,i)aAﬂb *

since the formula 1); appears on both sides of this sequent.

Case 2. If ¢; € A then, since 1; € Suby (S;) and Subs (S;) C Suby (S), we
have | Subg (S;) \ (AU{¢;:})] < |Subs (Si) \ 4] < |Suby(S)\ 4]. So by induction
hypothesis applied to m; with set AU {¢;} we obtain a proof =} in GIL such
that 7 =, (i, Ppo,iy, A, ¢) > L = Ppg ), 0. We define 7; applying Wk to 7} so
T F o, (1/}2',@[071-),/1,¢)) > 1= @[Q@,A,Qﬁ in GIL. Let A = {x0,---,Xn-1} We
define p; for j < n as the following proof in GIL

1L.
J~7 (L,A[O,j)’ (b) >l = A[Oaj)’ (b
Then, the desired proof, is
Tm e T ol e
0 Pn-1 Po 11

A LA{gi > iticm, ' = ¥n > ¢, A

where the last rule was applied with the ordering xo > L,...,xpn-1> L, ¢o >
Vo, -y Om—1 > Y1 and principal formula ,, > ¢.

By Theorem 2, Theorem 1 and Theorem 4 (where we take A to be an empty
set) we obtain the cut elimination for the system GIL.

Corollary 2. Let S be a sequent. If GIL + Cut - S, then GIL - S.

5 Conclusion

We defined two new sequent calculi for IL, a wellfounded and a local progress
(non-wellfounded) one. Both have a nice subformula property appering first in [7]
for IK4 (IL without Lob’s axiom), but with a much more concrete modal rule
which simplifies their proof-theoretic treatment.

Local progress proof theory, with our addition of local admissibility, allows us
to show cut elimination for IL without any complications that usually appear in
(wellfounded) GL, making it quite similar to cut elimination in simpler systems
such as K4 (or more concretely 1K4).

Finally, with the help of these systems (in particular, using cyclic proofs) we
have been capable of proving uniform interpolation for IL (to appear somewhere
else). As far as the authors know, this result was not known to this date.

We leave it as future work to study extensions of IL, in particular ILP should
be easy to handle. However, the logics ILW and ILM should provide bigger
challenges. Particularly, ILM is known to lack Craig interpolation ([3]). This
hints at the inexistence of a nice sequent calculi for it.
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