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Abstract

It is not clear what a system for evidence-based common knowledge should look like if common knowledge
is treated as a greatest fixed point. This paper is a preliminary step towards such a system. We argue
that the standard induction rule is not well suited to axiomatize evidence-based common knowledge. As an
alternative, we study two different deductive systems for the logic of common knowledge. The first system
makes use of an induction axiom whereas the second one is based on co-inductive proof theory. We show
the soundness and completeness for both systems.
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1 Introduction

Justification logics [6] are epistemic logics that explicitly include justifications for

an agent’s knowledge. Historically, Artemov [3,4] developed the first of these logics,

the Logic of Proofs, to solve the problem of a provability semantics for S4. Fitting’s

model construction [11] provides a natural epistemic semantics for the Logic of

Proofs, which can be generalized to the whole family of justification logics. It

augments Kripke models with a function that specifies admissible evidence for each

formula at a given state.

Instead of the simple A is known, justification logics formalize t is a justification

for A. Thus, these logics feature evidence-based knowledge and enable us to reason

about the evidence. This novel approach has many applications. For instance, it

makes it possible to tackle the logical omniscience problem [7] and to deal with

certain forms of self-referentiality [12].

The notion of common knowledge is essential in the area of multi-agent systems,

where coordination among a set of agents is a central issue. The textbooks [10,14]

provide excellent introductions to epistemic logics in general and common knowl-

edge in particular. Informally, common knowledge of a proposition A is defined as
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the infinitary conjunction everybody knows A and everybody knows that everybody

knows A and so on. This is equivalent to saying that common knowledge of A is

the greatest fixed point of λX.(everybody knows A and everybody knows X). The

standard approach to axiomatizing this property is by means of a co-closure axiom

(see Definition 2.1) and the following induction rule (see, for instance, [10]):

A→ E(A ∧B)

A→ CB
(I-R1)

A justified common knowledge operator was introduced by Artemov in [5]. How-

ever, his operator does not capture the greatest solution of the corresponding fixed

point equation. The relation between the classical and the justified versions of

common knowledge is studied in [2].

Our long-term goal is to come up with an evidence-based version of common

knowledge where common knowledge is treated as a greatest fixed point. However,

using a rule akin to (I-R1) in a justification logic makes it difficult to show that

the resulting logic enjoys internalization, the property that states that the logic

internalizes its own notion of proof, which is central to the Realization Theorem.

We believe that in order to achieve our aim it is necessary to consider alternative

formalizations of common knowledge. In this paper, we will examine two such ap-

proaches. The first is based on induction whereas the second employs co-induction.

The first system we study includes an induction axiom instead of the rule (I-R1).
This axiom was proposed in [14], where a semantic completeness proof is given. We

investigate the proof-theoretic relationship between this axiom and (I-R1) thereby

providing an alternative completeness proof.

Common knowledge is equivalent to an infinitary conjunction. Therefore, it

seems plausible that a justification term for common knowledge is an infinitely long

term, i.e., a co-inductive term. To support this approach, we introduce a co-in-

ductive system S for common knowledge. In this formal system, proofs may have

infinite branches. Such systems have previously been studied, for example, for the

µ-calculus [15,18] and the linear time µ-calculus [9]. The underlying idea of this

approach is based on the fundamental semantic theorem of the modal µ-calculus [8]

(due to Streett and Emerson [17]). A similar result was also developed in [16].

Our completeness proof for the infinitary system S is performed along the lines

of [15] utilizing the determinacy of certain infinite games. Alternatively, we could

use the completeness of the common knowledge system with an ω-rule [1]. The

transformation from ω-rules to infinite branches then would yield the completeness

of S (see [18] for this approach in the context of the µ-calculus).

The paper is organized as follows. In the next section, we introduce the lan-

guage and semantics for the logic of common knowledge. We recall the deductive

system HR from [10], which is based on (I-R1). In Section 3, we present the sys-

tem HAx, which includes the induction axiom from [14]. We then study a proof-

theoretic reduction of HR to HAx, thus providing the completeness of HAx. The

system S that features proofs with infinite branches is introduced in Section 4. We

establish the soundness and completeness of S by employing techniques from the

proof of the fundamental semantic theorem and results about infinite games.

2



Bucheli, Kuznets and Studer

2 Preliminaries

2.1 Language and Semantics

We consider a language with h agents for some h > 0. This language will be fixed

throughout the paper, and h will always denote the number of agents. Proposi-

tions P and their negations P are atoms. Formulae are denoted by A,B,C. They

are given by the following grammar

A ::= P | P | A ∧A | A ∨A | 2iA | 3iA | CA | C̃A ,

where 1 ≤ i ≤ h. The formula 2iA is read as agent i knows A, and the formula CA
is read as A is common knowledge. The connectives 2i and C have 3i and C̃ as their

respective duals. The negation ¬A of a formula A is defined in the usual way by

using De Morgan’s laws, the law of double negation, and the duality laws for modal

operators. We also define A→ B := ¬A ∨B and A↔ B := (A→ B) ∧ (B → A).

The formula EA is an abbreviation for everybody knows A:

EA := 21A ∧ · · · ∧2hA and ẼA := 31A ∨ · · · ∨3hA .

A Kripke structure M is a tuple (S,R1, . . . , Rh, π), where S is a non-empty set of

states, each Ri is a binary relation on S, and π is a valuation function that assigns

to each atomic formula a set of states such that π
(
P
)

= S \ π(P ).

Given a Kripke structureM = (S,R1 . . . , Rh, π) and states v, w ∈ S, we say that

w is reachable from v in n steps (reach(v, w, n)) if there exist states s0, . . . , sn such

that s0 = v, sn = w, and for all 0 ≤ j ≤ n−1 there exists 1 ≤ i ≤ h with Ri(sj , sj+1).

We say w is reachable from v if there exists an n with reach(v, w, n).

LetM = (S,R1 . . . , Rh, π) be a Kripke structure and v ∈ S be a state. We define

the satisfaction relation M, v |= A inductively on the structure of the formula A:

M, v |= P if v ∈ π(P ),

M, v |= P if v ∈ π
(
P
)
,

M, v |= A ∧B if M, v |= A and M, v |= B,

M, v |= A ∨B if M, v |= A or M, v |= B,

M, v |= 2iA if M, w |= A for all w such that Ri(v, w),

M, v |= 3iA if M, w |= A for some w with Ri(v, w),

M, v |= CA if M, w |= A for all w such that (∃n ≥ 1)reach(v, w, n),

M, v |= C̃A if M, w |= A for some w with (∃n ≥ 1)reach(v, w, n).

We writeM |= A ifM, v |= A for all v ∈ S. A formula A is called valid ifM |= A for

all Kripke structures M. A formula A is called satisfiable if M, v |= A for some

Kripke structure M and some state v.

2.2 Deductive System

Let us briefly recall the definition of the system for common knowledge that makes

use of the induction rule.
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Definition 2.1 [The system HR] The Hilbert calculus HR for the logic of common

knowledge is defined by the following axioms and inference rules:

Propositional axioms: All instances of propositional tautologies

Modus ponens: For all formulae A and B,

A A→ B

B
(MP)

Modal axioms: For all formulae A and B and all indices 1 ≤ i ≤ h,

2i(A→ B)→ (2iA→ 2iB) (K)

Necessitation rule: For all formulae A and all indices 1 ≤ i ≤ h,

A

2iA
(Nec)

Co-closure axiom: For all formulae A,

CA→ E(A ∧ CA) (Co-Cl)

Induction rule: For all formulae A and B,

B → E(A ∧B)

B → CA
(I-R1)

We have the following standard result, see [10].

Theorem 2.2 (Soundness and completeness of HR) For any formula A,

HR ` A if and only if A is valid.

3 The Inductive Way

3.1 Deductive System

We now introduce a deductive system for common knowledge where the induction

rule is replaced by an induction axiom. To obtain a complete system, we also need

to include a normality axiom and a necessitation rule for the common knowledge

operator.

Definition 3.1 [The system HAx] The Hilbert calculus HAx consists of the axioms

and rules of HR whereby (I-R1) is replaced by the following axioms and rule:

C-modal axiom: For all formulae A and B,

C(A→ B)→ (CA→ CB) (C-K)

C-necessitation rule: For all formulae A,

A

CA
(C-Nec)
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Induction axiom: For all formulae A,

EA ∧ C(A→ EA)→ CA (I-Ax)

In [14], an induction axiom is introduced as A ∧ C(A → EA) → CA. However, in

our setting, the axiom from [14] would not be sound since we do not define common

knowledge to be reflexive.

3.2 Soundness

The soundness of HAx is easily obtained.

Theorem 3.2 (Soundness) For any formula A, if HAx ` A, then A is valid.

Proof. As usual, by induction on the length of the derivation of HAx ` A. We only

show the case where A is the induction axiom. Let M be a Kripke structure. We

show by induction on n that for all n ≥ 1, if M, v |= EA ∧ C(A→ EA), then for all

states w with reach(v, w, n), we have M, w |= A. If n = 1, then M, v |= EA guar-

antees M, w |= A. For n = m + 1, m ≥ 1, let w be such that reach(v, w, n). Then

there exists v′ such that

(i) reach(v, v′,m) and

(ii) reach(v′, w, 1).

From (i) and M, v |= C(A→ EA) we obtain M, v′ |= A → EA. By the induc-

tion hypothesis, we get M, v′ |= A. Therefore, M, v′ |= EA. Thus, by (ii), we

get M, w |= A. 2

3.3 Completeness

In order to establish the completeness of HAx, we have to introduce an intermedi-

ate system Hint. We first reduce HR to Hint and then reduce Hint to HAx. These

reductions reveal the proof-theoretic relationship between the induction axiom and

the induction rule. Moreover, it follows that the completeness of HR implies the

completeness of HAx.

Definition 3.3 [The system Hint] Hint consists of the axioms and rules of HR where-

by (I-R1) is replaced by the following axiom and rule:

C-distributivity: For all formulae A and B,

C(A ∧B)→ (CA ∧ CB) (C-Dis)

Induction rule 2: For all formulae A,

A→ EA

EA→ CA
(I-R2)

Lemma 3.4 For each formula A, we have that HR ` A implies Hint ` A.

Proof. It is sufficient to show that (I-R1) is derivable in Hint. Assume

Hint ` B → E(A ∧B) . (1)
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Then Hint ` A ∧B → E(A ∧B). By (I-R2), we obtain that

Hint ` E(A ∧B)→ C(A ∧B) .

Using (C-Dis), we get Hint ` E(A ∧ B) → CA. Finally, (1) yields Hint ` B → CA,
which completes the proof. 2

Lemma 3.5 For each formula A, we have that Hint ` A implies HAx ` A.

Proof. We first show that (C-Dis) is derivable in HAx. The following formula is an

instance of (C-K):

HAx ` C(A ∧B → B)→ (C(A ∧B)→ CB) . (2)

HAx ` A∧B → B is a propositional axiom. By (C-Nec), HAx ` C(A∧B → B). By (2),

we have HAx ` C(A ∧B)→ CB. A similar argument yields HAx ` C(A ∧B)→ CA.
The last two statements together imply that (C-Dis) is derivable in HAx.

It remains to show that (I-R2) is derivable in HAx. Assume that HAx ` A→ EA.
By (C-Nec), we get HAx ` C(A → EA). Thus, the derivability of (I-R2) follows

from (I-Ax). 2

The two lemmas, together with the completeness of HR, give us the completeness

of HAx.

Corollary 3.6 (Completeness of HAx) For all formulae A, if A is valid, then

HAx ` A.

4 The Co-Inductive Way

4.1 Deductive System

We now introduce the infinitary system S for common knowledge. In this formal

system, proofs are finitely branching trees that may have infinitely long branches

while all finite branches must still end in an axiom. In order to obtain a sound

deductive system, we have to impose a global constraint on such infinite branches.

Roughly, we require that on every infinite branch in a proof, there be a greatest

fixed point unfolded infinitely often.

We consider sequents to be finite sets of formulae and denote them by Γ,∆,Σ.

For a sequent ∆ = {A1, . . . , An}, we denote the sequent {3iA1, . . . ,3iAn} by 3i∆

and the sequent {ẼA1, . . . , ẼAn} by Ẽ∆. In addition, M, v |= ∆ is understood

as M, v |= A1 ∨ · · · ∨An.

Definition 4.1 A preproof for a sequent Γ is a possibly infinite tree whose root is

labeled with Γ and which is built according to the following axioms and rules:

Axioms: For all sequents Γ and all propositions P ,

Γ, P, P (ax)
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Propositional rules: For all sequents Γ and all formulae A and B,

Γ, A,B

Γ, A ∨B
(∨)

Γ, A Γ, B

Γ, A ∧B
(∧)

Modal rules: For all sequents Γ and Σ, all formulae A, and all indices 1 ≤ i ≤ h,

Γ, A

3iΓ,2iA,Σ
(2)

Fixed point rules: For all sequents Γ and all formulae A,

Γ, ẼA ∨ ẼC̃A

Γ, C̃A
(C̃)

Γ,EA ∧ ECA

Γ,CA
(C)

We now introduce the notion of a thread in a branch of a proof tree.

Definition 4.2 The principal formula of a rule is the formula that is explicitly

displayed in the conclusion of the rule. The active formulae of a rule are those

formulae that are explicitly displayed in the premise(s) of the rule. The formulae

in Γ and Σ are called the side formulae of a rule.

Definition 4.3 Consider a proof tree for some sequent. For all rule applications r

that occur in this proof tree, we define a connection relation Con(r) on formulae as

follows:

(i) In the case when r is not an application of (2), we define (A,B) ∈ Con(r) if

A = B and A is a side formula of r or if A is the principal formula and B is

an active formula of r.

(ii) In the case when r is an application of (2), we define (2iA,A) ∈ Con(r) if 2iA is

the principal formula of r and we define (3iB,B) ∈ Con(r) if 3iB ∈ 3iΓ.

Definition 4.4 Consider a finite or infinite branch Γ0,Γ1, . . . in a proof tree. Let

ri be the rule application where Γi is the conclusion and Γi+1 is a premise. A thread

in this branch is a sequence of formulae A0, A1, . . . such that (Ai, Ai+1) ∈ Con(ri)

and Ai ∈ Γi for every i. Note that a thread in an infinite branch may be finite or

infinite.

Definition 4.5 Consider an infinite branch of a preproof for a sequent Γ. An

infinite thread in this branch is called a C-thread if infinitely many of its formulae

are the principal formulae of applications of (C).

Definition 4.6 An S-proof for a sequent Γ is a preproof for Γ such that every

finite branch ends in an axiom and every infinite branch contains a C-thread. We

write S ` Γ if there exists an S-proof for Γ.

We will illustrate how S-proofs work by deriving the induction axiom in S. In

order to present this derivation in a compact form, we need to state some properties

of the system. It should be noted that the proof of Lemma 4.7(ii) requires infinite

derivations, e.g., in the case of A = CB.
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(ax’)

¬A,A
(E)

Ẽ¬A, C̃(A ∧ Ẽ¬A),EA

(ax’)

¬A,A, C̃(A ∧ Ẽ¬A),CA

... (C)
¬A, Ẽ¬A, C̃(A ∧ Ẽ¬A),CA

(∧)
¬A,A ∧ Ẽ¬A, C̃(A ∧ Ẽ¬A),CA

(E)
Ẽ¬A, Ẽ(A ∧ Ẽ¬A), ẼC̃(A ∧ Ẽ¬A),ECA

(∨)
Ẽ¬A, Ẽ(A ∧ Ẽ¬A) ∨ ẼC̃(A ∧ Ẽ¬A),ECA

(C̃)
Ẽ¬A, C̃(A ∧ Ẽ¬A),ECA

(∧)
Ẽ¬A, C̃(A ∧ Ẽ¬A),EA ∧ ECA

(C)
Ẽ¬A, C̃(A ∧ Ẽ¬A),CA

Fig. 1. A sample S-proof for the induction axiom (I-Ax) with a highlighted C-thread.

Lemma 4.7 (i) For all formulae A and all sequents Γ and Σ, the following analog

of the (2)-rule is derivable in S:

Γ, A

ẼΓ,EA,Σ
(E)

(ii) For all formulae A and all sequents Γ, the following generalized form of ax-

ioms (ax) is derivable:

S ` Γ, A,¬A (ax’)

Example 4.8 Fig. 1 contains the bottom part of an infinite S-proof for the induc-

tion axiom (I-Ax) expressed in a sequent form as Ẽ¬A, C̃(A∧ Ẽ¬A), CA. Two of the

three topmost sequents shown are labeled (ax’) and are derivable by Lemma 4.7(ii).

The only infinite branch outside of (ax’)-derivations has infinitely many repetitions

of the sequent ¬A, Ẽ¬A, C̃(A ∧ Ẽ¬A),CA. To show that this preproof is indeed an

S-proof, it is sufficient to find a C-thread in this branch. The thread that consists

of the red underlined formulae is such a C-thread.

4.2 Soundness

The soundness proof essentially uses the idea that underlies the fundamental se-

mantic theorem of the modal µ-calculus.

Let δ(A) be the maximal number of nested C operators in the formula A: for

instance, δ(C(CP ∨ CQ)) = 2. Given m ≥ 1 and a sequence σ = (σm, . . . , σ1) of

ordinals, for all formulae A such that δ(A) ≤ m, we define the satisfaction rela-

tion |=σ
C in the same way as |= except in the case of C, where we setM, v |=σ

C CB if

M, w |=σ
C B for all w for which there exists n with σδ(CB) ≥ n ≥ 1 and reach(v, w, n).

We immediately obtain

M, v |=(σm,...,σδ(CB)+1,...,σ1)

C CB iff M, v |=(σm,...,σδ(CB),...,σ1)

C EB ∧ ECB . (3)

It is sufficient to consider only ordinals ≤ ω, but ω itself as a possible element of a

sequence σ is necessary to guarantee that for all formulae A,

M, v 6|= A implies that there exists σ such that M, v 6|=σ
C A . (4)
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Lemma 4.9 Let A be a formula, ∆ be a sequent, σ be a sequence of ordinals,

M = (S,R1, . . . , Rh, π) be a Kripke structure, v ∈ S be a state, and 1 ≤ i ≤ h. If

M, v 6|= 2iA,3i∆ and M, v 6|=σ
C 2iA, then there exists a state w ∈ S with Ri(v, w)

such that M, w 6|= A,∆ and M, w 6|=σ
C A.

Proof. Suppose for all w ∈ S with Ri(v, w), at least one of the claimsM, w |= A,∆

or M, w |=σ
C A holds. We distinguish the following two cases:

(i) M, w |=σ
C A holds for all w ∈ S with Ri(v, w). Then we have M, v |=σ

C 2iA.

Contradiction.

(ii) There is at least one w ∈ S with Ri(v, w) such that M, w 6|=σ
C A. Then

M, w 6|= A. Hence, there must be a formula B ∈ ∆ such that M, w |= B.

However, this meansM, v |= 3iB and, therefore,M, v |= 3i∆. Contradiction.

2

Given two sequences σ and τ of the same length m, we say σ < τ if σ is smaller

than τ with respect to the lexicographic ordering. Since we consider sequences of a

fixed length, the relation < is a well-ordering.

Theorem 4.10 (Soundness) For all formulae A, if A is not valid, then S 0 A.

Proof. Suppose A is not valid yet there is an S-proof T for it. Then there is a

Kripke structure M and a state s such that M, s 6|= A, which will be used to

construct a branch Γ0,Γ1, . . . with the corresponding inferences r0, r1, . . . in T and

a sequence s0, s1, . . . of states in M such that

(a) M, si 6|= Γi and

(b) if (B,C) ∈ Con(ri), C ∈ Γi+1, and M, si 6|=σ
C B, then M, si+1 6|=σ

C C.

Let Γ0 := A and s0 := s. If Γi and si are given, we construct Γi+1 and si+1 according

to the different cases for ri. Note that because of (a) Γi cannot be axiomatic and

thus must have been inferred by some rule.

(i) ri = (2): Let 2iB ∈ Γi be the principal formula of ri. Let σ be the least

sequence such that M, si 6|=σ
C 2iB. We apply Lemma 4.9 for this σ to find a

state si+1 such that (a) and (b) hold. We let Γi+1 be the unique premise of ri.

(ii) ri = (∧): Let B1 ∧ B2 ∈ Γi be the principal formula of ri. Let σ be the least

sequence such that M, si 6|=σ
C B1 ∧B2. Let Γi+1 be the j-th premise of ri such

that M, si 6|=σ
C Bj . Further, set si+1 := si. This construction guarantees (a)

and (b).

(iii) In all other cases, ri has a unique premise ∆. We set si+1 := si and Γi+1 := ∆.

Again (a) and (b) hold.

We have constructed an infinite branch in T . Since T is an S-proof, this branch

must contain a C-thread A0, A1, . . . . For each natural number j, we define σj to be

the least sequence such that M, sj 6|=σj

C Aj . Note that σj exists by (4). It follows

from (b) that σj+1 ≤ σj for all j. Moreover, because we consider a C-thread, there

are infinitely many applications of (C), which, according to (3), means that there are

infinitely many j’s with σj+1 < σj . This contradicts the well-foundedness of <. 2
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4.3 Completeness

The completeness proof for the infinitary system S is based on [15], where a similar

result is shown for the modal µ-calculus. For a given formula A, we define an infinite

game such that player I has a winning strategy if and only if there is an S-proof

for A and player II has a winning strategy if and only if there is a countermodel

for A. It is possible to show that this game is determined, i.e., one of the players

has a winning strategy. Hence, the completeness of S follows.

Definition 4.11 A sequent Γ is saturated if all of the following conditions hold:

(i) if A ∧B ∈ Γ, then A ∈ Γ or B ∈ Γ,

(ii) if A ∨B ∈ Γ, then A ∈ Γ and B ∈ Γ,

(iii) if CA ∈ Γ, then EA ∧ ECA ∈ Γ, and

(iv) if C̃A ∈ Γ, then ẼA ∨ ẼC̃A ∈ Γ.

Definition 4.12 The system SGame consists of the rules of S whereby (2) is replaced

by the following rules:

Alternative modal rules: Let 1 ≤ m ≤ h, H = {h1, . . . , hm} ⊆ {1, . . . , h}, and

nh1 , . . . , nhm be positive integers. For all saturated sequents Σ that contain neither

formulae that start with 3j , j ∈ H, nor formulae that start with 2i, 1 ≤ i ≤ h, all

sequents Γj , j ∈ H, and all formulae Aj,1, . . . , Aj,nj , j ∈ H,

Γh1 , Ah1,1 . . . Γh1 , Ah1,nh1 . . . Γhm , Ahm,1 . . . Γhm , Ahm,nhm
3h1Γh1 ,2h1Ah1,1, . . . ,2h1Ah1,nh1 , . . . ,3hmΓhm ,2hmAhm,1, . . . ,2hmAhm,nhm ,Σ

(2′)

Note that this rule has nh1 + · · ·+ nhm many premises.

An SGame-tree for a sequent Γ is built by iterating the following two steps until

one reaches a saturated sequent which is either axiomatic or to which (2′) cannot

be applied:

(i) Apply the rules (∨), (∧), (C), and (C̃) backwards until a saturated sequent

is reached. While applying the rules, make sure that the conclusion always

remains a subset of the premise.

(ii) Apply (2′) backwards, if possible.

We now introduce a system SDis for establishing unprovability. Accordingly, its

rules should not be read as sound, i.e., preserving validity, but rather as “dis-sound,”

i.e., preserving invalidity.

Definition 4.13 The system SDis consists of the rules of SGame whereby (∧) is

replaced by the following two rules:

Alternative (∧): For all sequents Γ and all formulae A and B,

Γ, A

Γ, A ∧B
(∧1)

Γ, B

Γ, A ∧B
(∧2)

An SDis-tree is built in the same way as an SGame-tree except that (∧1) and

(∧2) are used instead of (∧). Therefore, an SDis-tree for a sequent Γ is not unique.
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...
(C)

CP, C̃CP , P
(2′)

31CP,31C̃CP ,21P,Σ

... (∗)

CP,EP ∧ ECP,EP, C̃CP, ẼCP ∨ ẼC̃CP, ẼCP, ẼC̃CP
(∨)

CP,EP ∧ ECP,EP, C̃CP, ẼCP ∨ ẼC̃CP
(C̃)

CP,EP ∧ ECP,EP, C̃CP
(∧1)

CP,EP ∧ ECP, C̃CP
(C)

CP, C̃CP

Fig. 2. A sample SDis-disproof for C̃P → C̃CP with a highlighted C̃-thread.

The notions of a thread and a C-thread are extended to SGame- and SDis-trees. A

C̃-thread is a thread that contains infinitely many principal formulae of applications

of (C̃). Note that any infinite thread is either a C- or a C̃-thread but not both.

Definition 4.14 We say that an SDis-tree T for a sequent Γ disproves Γ if

(i) no branch ends with an axiom and

(ii) any infinite thread in any branch is a C̃-thread.

Example 4.15 In order to disprove C̃P → C̃CP , we construct an SDis-tree T for a

corresponding sequent CP, C̃CP (see Fig. 2). In this tree, 31CP,31C̃CP,21P,Σ is

a saturation of the sequent

CP,EP ∧ ECP,EP, C̃CP, ẼCP ∨ ẼC̃CP, ẼCP, ẼC̃CP . (5)

The saturation process is abbreviated as (∗). It involves exactly 2h− 2 applications

of (∨) to saturate the disjunctions ẼCP and ẼC̃CP . In addition, the conjunction EP
is saturated by at most h−1 applications of (∧1) and (∧2) in such a way that 21P is

the only resulting formula that starts with 2i. Most formulae that result from

this saturation are disjunctions, conjunctions, or are already present in (5), with

the exception of 31CP, . . . ,3hCP,31C̃CP, . . . ,3hC̃CP, and 21P . Thus, Σ contains

neither formulae that start with 2i nor formulae that start with 31, which enables

us to apply (2′). The tree T extends upward indefinitely with infinitely many

repetitions of the sequent CP, C̃CP, P . This tree has only one branch, which is

infinite. And this branch contains only one infinite thread, the one that consists of

the red underlined formulae in Fig. 2. And this thread is indeed a C̃-thread.

It may seem that this branch also contains a C-thread because there are infinitely

many applications of (C) in the branch. However, the principal formulae of these

(C)-rules do not belong to one thread. In particular, the thread that starts from CP
in the root sequent does not pass through CP in the premise of the (2′)-rule shown

in Fig. 2. Instead, this thread passes through EP ∧ ECP , EP , . . . , 21P , and P and

eventually disappears after the next application of (2′).

Now we are going to show that any sequent Γ has either an S-tree that proves
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it or an SDis-tree that disproves it.

Let T be an SGame-tree for Γ. We define an infinite game for two players on T .

Intuitively, player I will try to show that Γ is provable while player II will try to

show the opposite. The game is played as follows:

(i) the game starts at the root of T ,

(ii) at any (2′) node, player I chooses one of the children,

(iii) at any (∧) node, player II chooses one of the children,

(iv) at all other non-leaf nodes, the only child is chosen by default.

Such a game results in a path in T . In the case of a finite path, player I wins if the

path ends in an axiom; otherwise, player II wins. In the case of an infinite path,

player I wins if the path contains a C-thread; otherwise, player II wins.

Theorem 4.16 (i) There is a winning strategy for player I if and only if there is

an S-proof for Γ contained in T .

(ii) There is a winning strategy for player II if and only if there is an SDis-disproof

for Γ contained in T .

Proof. For the first claim, if there is an S-proof for Γ contained in T , then the

winning strategy for player I is to stay in the nodes that belong to this proof. For

the other direction, consider a winning strategy for player I. It induces an S-proof

for Γ as follows: the root of T is the root of the proof; if a node is included in the

proof and player I has to perform the next move, then we select the child prescribed

by the winning strategy; if it is player II’s move, then we include all the children in

our proof. The proof of the second claim is similar. 2

With the help of Martin’s theorem [13] we can show that this game is determined,

i.e., one of the players has a winning strategy. For details of this argument, see [9,15].

We obtain the following as a corollary:

Theorem 4.17 Let T be an SGame-tree for Γ. Then there exists either an S-proof

for Γ in T or an SDis-disproof for Γ in T .

It remains to show that from a given SDis-disproof for Γ, we can construct a

countermodel for Γ.

Definition 4.18 Consider an SDis-tree T that disproves a sequent Γ. The Kripke

structure MT = (ST , RT
1 , . . . , R

T
h , π

T ) induced by T is defined as follows:

(i) ST consists of all occurrences of sequents in the conclusions of applications

of (2′) in T as well as of all occurrences of sequents in the leaves of T ,

(ii) RT
i (Γ,∆) holds if there is exactly one application of (2′) in between Γ and ∆

and if there is a thread through Γ and ∆ that contains 2iA ∈ Γ and A ∈ ∆

for some formula A,

(iii) πT (P ) := {Γ ∈ ST : P /∈ Γ}.

We can assign to each sequent ∆ in T the corresponding state in ST simply by

finding the closest saturated descendant. We will denote this state by sat(∆).

12
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...

31CP,31C̃CP,21P,Σ, P •

1

OO

P

31CP,31C̃CP,21P,Σ, P •

1

OO

P

31CP,31C̃CP,21P,Σ •

1

OO

P

Fig. 3. The Kripke structure MT induced by the SDis-tree T from Example 4.15.

Example 4.19 The SDis-tree T constructed in Example 4.15 for C̃P → C̃CP in-

duces a Kripke structure MT shown in Fig. 3. It is easy to see that

MT , 31CP,31C̃CP,21P,Σ 6|= C̃P → C̃CP .

Lemma 4.20 states that this is a general phenomenon: the root of the Kripke struc-

ture induced by a given SDis-tree falsifies the sequent at the root of the tree.

We define δ̃(A) to be the maximal number of nested C̃ operators in A. Consider

a Kripke structureM, a state s, and a formula A. Let the C̃-signature sigC̃(A, s) be

the least sequence σ = (σδ̃(A), . . . , σ1) such that M, s |=σ
C̃
A. Here |=σ

C̃
is defined in

the same way as |= except in the case of C̃, where we setM, v |=σ
C̃
C̃B ifM, w |=σ

C̃
B

for some w for which there exists n with σδ̃(C̃B) ≥ n ≥ 1 and reach(v, w, n).

Lemma 4.20 Consider an SDis-tree T that disproves the sequent Γ = {A} for some

formula A. Then MT , sat(Γ) 6|= A.

Proof. Suppose that MT , sat(Γ) |= A. Then we can construct a C-thread in some

branch of T , which contradicts the assumption that T disproves A. We will si-

multaneously construct a branch Γ1,Γ2, . . . and a thread A1, A2, . . . in it such that

MT , sat(Γn) |= An for all n. (6)

We start with Γ1 := Γ and A1 := A. Now assume that we have constructed the

thread up to some element An ∈ Γn with MT , sat(Γn) |= An. The next element is

selected as follows:

(i) If a rule different from (2′) has been applied, then there is only one child of Γn
and we let Γn+1 be that child. We have sat(Γn) = sat(Γn+1) and distinguish

the following cases:

(a) An is not the principal formula. We set An+1 := An.

(b) An = B ∨ C is the principal formula. We set An+1 := B if

sigC̃(B ∨ C, sat(Γn)) = sigC̃(B, sat(Γn+1)) ;

otherwise, we set An+1 := C.
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(c) An = B∧C is the principal formula. We set An+1 := B if B occurs in Γn+1;

otherwise, we set An+1 := C.

(d) An = CB is the principal formula. Let An+1 := EB ∧ ECB.

(e) An = C̃B is the principal formula. Let An+1 := ẼB ∨ ẼC̃B.

(ii) If (2′) has been applied, then we have sat(Γn) = Γn. We distinguish the

following cases:

(a) An = 2iB. There is a child where B is the active formula. Let Γn+1 be

that child and set An+1 := B.

(b) An = 3iB. Because of MT , sat(Γn) |= An, there exists a state t such

that RT
i (sat(Γn), t) and sigC̃(B, t) = sigC̃(3iB, sat(Γn)). The definition

of MT implies that there is a child Γ′ of Γn with sat(Γ′) = t. We set

Γn+1 := Γ′ and An+1 := B.

(c) An is not of the form 2iB or 3iB. Then there exists A′
n ∈ Γn that is of

this form such that MT ,Γn |= A′
n. We drop the thread constructed so far

and continue instead with the thread from A to A′
n.

If the constructed thread were finite, then the last element Γn of the path would nec-

essarily be a saturated sequent which would not contain formulae of the form 2iB.

Then the definition of MT would imply that MT ,Γn 6|= An, which would contra-

dict (6). Hence, the constructed thread is infinite. We can now use an argument

about signatures similar to the one used in the soundness proof for S to show that

the constructed thread cannot be a C̃-thread. This contradicts the assumption that

T disproves Γ. 2

Theorem 4.21 (Completeness of S) If A is a valid formula, then there exists

an S-proof for it.

Proof. Let A be a formula that is not provable in S. By Theorem 4.17, there exists

an SDis-tree that disproves A. Thus, by Lemma 4.20, there exists a countermodel

for A. Hence, A is not valid. 2

5 Conclusions

We have presented two systems HAx and S for common knowledge, which could be

used to construct a justification counterpart for common knowledge. It appears

that HAx is more suitable for this task than HR as the latter has an additional rule,

(I-R1), which may make it difficult to prove constructive necessitation, a property

essential for justification logics. However, to establish a connection between the

modal logic of common knowledge and its justification counterpart, the so-called

Realization Theorem, a cut-free sequent calculus (akin to S) for the modal logic is

ordinarily required. Furthermore, the system S might give us more insight into the

nature of common knowledge evidence terms.

The idea of treating common knowledge evidence terms as co-inductive struc-

tures seems conceptually appealing but requires further investigation into the re-

lationship between HAx and S. In particular, syntactic cut-elimination is vital for

embedding HAx into S, which could shed a new light on how common knowledge

emerges.
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